This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying ...This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid...An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.展开更多
Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that th...Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.展开更多
The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwel...The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwell time approach, sufficient con- ditions are derived in terms of linear operator inequalities frame- work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin- ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system's parameter and the boundary condition. Finally, two numerical examples are given to illustrate the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(6110407361104123)the China Postdoctoral Science Foundation(201003548)
文摘This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.
基金supported by the China Postdoctoral Science Foundation (200904501035 201003548)+3 种基金the National Natural Science Foundation of China (60835001907160289101600460804017)
文摘An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach.
基金supported by the National Natural Science Foundation of China (60835001)
文摘Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.
基金supported by the National Natural Science Foundation of China(6127311961374038+2 种基金6147307961473083)the Natural Science Foundation of Shanxi Province(2012011002-2)
文摘The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwell time approach, sufficient con- ditions are derived in terms of linear operator inequalities frame- work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin- ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system's parameter and the boundary condition. Finally, two numerical examples are given to illustrate the proposed method.