Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,an...Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.展开更多
The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication...The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication(VLC)is deemed an important ancillary technology to wireless communication.It has shown potential for a wide range of applications in next-generation communication.Micro light-emitting diodes(μLEDs)are ideal light sources for high-speed VLC,owing to their high modulation bandwidths.In this review,an overview ofμLEDs for VLC is presented.Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization,crystal orientation,and active region structure.Moreover,electroluminescent white LEDs,photoluminescent white LEDs based on phosphor or quantum-dot color conversion,andμLED-based detectors for VLC are introduced.Finally,the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced,including underwater VLC and artificial intelligence-based VLC systems.展开更多
基金supports from National Natural Science Foundation of China (62274138,11904302)Natural Science Foundation of Fujian Province of China (2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China (2021H0011)Fujian Province Central Guidance Local Science and Technology Development Fund Project In 2022 (2022L3058)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone (3502ZCQXT2022005)。
文摘Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.
基金the National Natural Science Foundation of China(62274138,11904302)Science and Technology Plan Project in Fujian Province of China(2021H0011)+2 种基金Fujian Province Central Guidance Local Science and Technology Development Fund Project in 2022(2022L3058)Major Science and Technology Project of Xiamen,China(3502Z20191015)Foshan Hi-tech Zone High-tech Industrialization Entrepreneurial Team Special Guidance Fund in 2022(222019000131).
文摘The evolution of next-generation cellular networks is aimed at creating faster,more reliable solutions.Both the next-generation 6G network and the metaverse require high transmission speeds.Visible light communication(VLC)is deemed an important ancillary technology to wireless communication.It has shown potential for a wide range of applications in next-generation communication.Micro light-emitting diodes(μLEDs)are ideal light sources for high-speed VLC,owing to their high modulation bandwidths.In this review,an overview ofμLEDs for VLC is presented.Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization,crystal orientation,and active region structure.Moreover,electroluminescent white LEDs,photoluminescent white LEDs based on phosphor or quantum-dot color conversion,andμLED-based detectors for VLC are introduced.Finally,the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced,including underwater VLC and artificial intelligence-based VLC systems.