期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental Research and Mathematical Modelling for Coal Reburning in Furnace
1
作者 XIANG Jun SU Sheng +3 位作者 sun lu-shi sun Xue-xi ZHANG Zhong-xiao ZHU Ji-mu 《Journal of China University of Mining and Technology》 EI 2006年第3期301-307,共7页
Reburning technology is one of the most cost-effective NOx reduction strategies for coal combustion systems. In this paper, a nitric oxide submodel incorporated into a comprehensive coal combustion model was developed... Reburning technology is one of the most cost-effective NOx reduction strategies for coal combustion systems. In this paper, a nitric oxide submodel incorporated into a comprehensive coal combustion model was developed for predicting NOx reduction in a 93 kW laboratory-scale coal combustion furnace by reburning. This NO submodel, including reburning mechanism, requires the solution of only two transport equations to model the behavior of NO reduction in the reburning process. A number of experiments have been performed in the same furnace, and the experimental data obtained from the optimized reburn configuration was used to validate the model. Measurements and predictions both show above 50% reduction of NO emissions for the optimized reburning process. Profile comparisons show that the predicted temperature and oxygen concentration match well with the measurements, and the general trend of predicted NO concentration is very similar to that measured. The results of this study show that the present nitric oxide submodel depicts quite well the observed behaviour of NO annihilation in the reburning process. It is expected that this usable and computationally economic model represents a useful tool to simulate the gaseous fuel reburning process for the researchers concerned with practical combustors. 展开更多
关键词 coal combustion nitric oxide REBURNING experimental research mathematical modeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部