In this paper,thermosphere density data of"SZ-2"Atmospheric Density Detec tor From February to April 2001 are used to study the changes of the thermo sphere density in the sunshine and shaded area during sol...In this paper,thermosphere density data of"SZ-2"Atmospheric Density Detec tor From February to April 2001 are used to study the changes of the thermo sphere density in the sunshine and shaded area during solar and geomagnetic activity.The results show that in the sunshine area,the peak value of atmo spheric density changes as F10.7 varies;during geomagnetic activity,the peak value of atmospheric density in the shaded area increases as Ap increases,and start off with higher latitude,therefore move to lower latitude.展开更多
该研究应用Illumina Mi Seq高通量测序技术解析酱香型白酒第四轮次酒酿造过程中细菌多样性,并阐明其优势真菌微生物群落结构及其随酿造工艺动态变化。结果表明,在酒曲中主要优势菌有芽孢杆菌科(Bacillaceae)、海洋芽胞杆菌属(Oceanobaci...该研究应用Illumina Mi Seq高通量测序技术解析酱香型白酒第四轮次酒酿造过程中细菌多样性,并阐明其优势真菌微生物群落结构及其随酿造工艺动态变化。结果表明,在酒曲中主要优势菌有芽孢杆菌科(Bacillaceae)、海洋芽胞杆菌属(Oceanobacillus);堆积发酵中主要优势菌有芽孢杆菌科(Bacillaceae)、变形菌纲(Proteobacteria);在窖内发酵中乳杆菌属(Lactobacillus)占绝对优势;窖泥中主要优势菌有放线菌(Actinomyces)和乳杆菌属(Lactobacillus)和醋杆菌属(Acetobacter)。同一酒厂和不同酒厂新老车间酒曲、堆积、窖内发酵、窖泥之间细菌组成相似度较高,但其优势菌群丰度差异显著。发酵车间使用年限及窖龄影响着酿酒微生物多样性;使用时间长的车间和窖池其环境微生物种群结构更稳定,优势菌群更突出。展开更多
In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial...In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial progress has been achieved in space science study, exploration technology as well as experiment technology. Strategic Priority Program on Space Science was officially started in 2011. Through both self-developed space science missions and those with international cooperation,it is expected that the innovative breakthroughs will be realized, leapfrog development of related high-tech will be achieved to establish the important strategic status of space science in national development. To sum up, the implementation of the Strategic Priority Program on Space Science will definitely promote the rapid development of China's space science endeavor, making contributions to China's development and the progress of human civilization.展开更多
In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase o...In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase of the Strategic Priority Program on Space Science(SPP I)which includes 4 space science missions:the Dark Matter Particle Explorer(DAMPE),ShiJian-10(SJ-10),Quantum Experiments at Space Scale(QUESS)and Hard X-ray Modulation Telescope(HXMT).Aiming to address fundamental scientific questions,SPP II focuses on two major themes:How the universe and life originate and evolve and What is the relationship between the solar system and human beings.In areas that Chinese scientists have advantages,new space science missions including Graviational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),the Advanced space-based Solar Observatory(ASO-S),the Einstein Probe(EP),and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)have been approved in the framework of SPP II.This paper presents the research highlights of the SPP I,introduces the recent progress of SPP II,and puts forward the prospects for future development.展开更多
Based on the measurements made by Atmospheric Density Detectors(ADDs) onboard Chinese spacecraft Shenzhou 2-4,the variations of thermosphere density are revealed.During the quiet period,the density at spacecraft altit...Based on the measurements made by Atmospheric Density Detectors(ADDs) onboard Chinese spacecraft Shenzhou 2-4,the variations of thermosphere density are revealed.During the quiet period,the density at spacecraft altitude of 330~410 km exhibited a dominant diurnal variation,with high value on dayside and low value on nightside.The ratio of the diurnal maximum density to the minimum ranged from 1.7 to 2.0.The ratio shows a positive correlation with the level of solar activity and a negative correlation with the level of geomagnetic activity.When a geomagnetic disturbance comes,the atmospheric density at the altitude of 330~410 km displayed a global enhancement.For a strong geomagnetic disturbance,the atmospheric density increased by about 56%,and reached its maximum about 6~7 hours after the geomagnetic disturbance peak. The density asymmetry was also observed both in the southern and northern hemisphere during the geomagnetic disturbance peak.展开更多
文摘In this paper,thermosphere density data of"SZ-2"Atmospheric Density Detec tor From February to April 2001 are used to study the changes of the thermo sphere density in the sunshine and shaded area during solar and geomagnetic activity.The results show that in the sunshine area,the peak value of atmo spheric density changes as F10.7 varies;during geomagnetic activity,the peak value of atmospheric density in the shaded area increases as Ap increases,and start off with higher latitude,therefore move to lower latitude.
文摘该研究应用Illumina Mi Seq高通量测序技术解析酱香型白酒第四轮次酒酿造过程中细菌多样性,并阐明其优势真菌微生物群落结构及其随酿造工艺动态变化。结果表明,在酒曲中主要优势菌有芽孢杆菌科(Bacillaceae)、海洋芽胞杆菌属(Oceanobacillus);堆积发酵中主要优势菌有芽孢杆菌科(Bacillaceae)、变形菌纲(Proteobacteria);在窖内发酵中乳杆菌属(Lactobacillus)占绝对优势;窖泥中主要优势菌有放线菌(Actinomyces)和乳杆菌属(Lactobacillus)和醋杆菌属(Acetobacter)。同一酒厂和不同酒厂新老车间酒曲、堆积、窖内发酵、窖泥之间细菌组成相似度较高,但其优势菌群丰度差异显著。发酵车间使用年限及窖龄影响着酿酒微生物多样性;使用时间长的车间和窖池其环境微生物种群结构更稳定,优势菌群更突出。
文摘In 1957, the launch of the first artificial satellite ushered in a new era for modern space science. The past 50 years' developments in China's space science have witnessed many major missions, and substantial progress has been achieved in space science study, exploration technology as well as experiment technology. Strategic Priority Program on Space Science was officially started in 2011. Through both self-developed space science missions and those with international cooperation,it is expected that the innovative breakthroughs will be realized, leapfrog development of related high-tech will be achieved to establish the important strategic status of space science in national development. To sum up, the implementation of the Strategic Priority Program on Space Science will definitely promote the rapid development of China's space science endeavor, making contributions to China's development and the progress of human civilization.
基金Supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences(XDA15000000)。
文摘In May 2018,the second phase of the Strategic Priority Program on Space Science(SPP II)was officially approved by the Chinese Academy of Sciences,in view of the significant scientific achievements of the first phase of the Strategic Priority Program on Space Science(SPP I)which includes 4 space science missions:the Dark Matter Particle Explorer(DAMPE),ShiJian-10(SJ-10),Quantum Experiments at Space Scale(QUESS)and Hard X-ray Modulation Telescope(HXMT).Aiming to address fundamental scientific questions,SPP II focuses on two major themes:How the universe and life originate and evolve and What is the relationship between the solar system and human beings.In areas that Chinese scientists have advantages,new space science missions including Graviational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM),the Advanced space-based Solar Observatory(ASO-S),the Einstein Probe(EP),and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)have been approved in the framework of SPP II.This paper presents the research highlights of the SPP I,introduces the recent progress of SPP II,and puts forward the prospects for future development.
文摘Based on the measurements made by Atmospheric Density Detectors(ADDs) onboard Chinese spacecraft Shenzhou 2-4,the variations of thermosphere density are revealed.During the quiet period,the density at spacecraft altitude of 330~410 km exhibited a dominant diurnal variation,with high value on dayside and low value on nightside.The ratio of the diurnal maximum density to the minimum ranged from 1.7 to 2.0.The ratio shows a positive correlation with the level of solar activity and a negative correlation with the level of geomagnetic activity.When a geomagnetic disturbance comes,the atmospheric density at the altitude of 330~410 km displayed a global enhancement.For a strong geomagnetic disturbance,the atmospheric density increased by about 56%,and reached its maximum about 6~7 hours after the geomagnetic disturbance peak. The density asymmetry was also observed both in the southern and northern hemisphere during the geomagnetic disturbance peak.