期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solving Stackelberg prediction games using inexact hyper-gradient methods
1
作者 SHI Xu WANG Jiulin +1 位作者 JIANG Rujun song weizheng 《运筹学学报(中英文)》 北大核心 2025年第3期93-123,共31页
The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are ... The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are computationally expensive and scarce.We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge.Particularly,we first use a Taylor expansion-based approach to obtain a good initial point.Then we apply a hyper-gradient descent method with an ex-plicit approximate hyper-gradient.We establish the convergence results of our algorithm theoretically.Furthermore,when the follower employs the least squares loss function,our method is shown to reach an e-stationary point by solving quadratic subproblems.Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art. 展开更多
关键词 Stackelberg prediction game approximate hyper-gradient bilevel opti-mization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部