Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
射频识别技术(radio frequency identification,RFID)在室内定位领域得到广泛的关注及应用。距离估计是实现RFID室内定位的重要基础。将基于多频相位差和中国余数定理的融合方法应用于声表面波(surface acoustic wave,SAW)RFID技术,实...射频识别技术(radio frequency identification,RFID)在室内定位领域得到广泛的关注及应用。距离估计是实现RFID室内定位的重要基础。将基于多频相位差和中国余数定理的融合方法应用于声表面波(surface acoustic wave,SAW)RFID技术,实现了标签的无模糊距离估计。分析了该方法在SAWRFID系统中实现距离估计所面临的主要误差来源及相应的修正方法。通过仿真实验,得到该方法在理论上要实现高稳定性及高精度的距离估计,则SAWRFID阅读器系统的模糊相位测量误差应不超过3°的系统指标要求。最后,通过实验验证了该方法在SAWRFID系统中的可实现性,结果表明所研制的系统当前能达到的距离估计均方根误差为16.7cm。展开更多
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
文摘射频识别技术(radio frequency identification,RFID)在室内定位领域得到广泛的关注及应用。距离估计是实现RFID室内定位的重要基础。将基于多频相位差和中国余数定理的融合方法应用于声表面波(surface acoustic wave,SAW)RFID技术,实现了标签的无模糊距离估计。分析了该方法在SAWRFID系统中实现距离估计所面临的主要误差来源及相应的修正方法。通过仿真实验,得到该方法在理论上要实现高稳定性及高精度的距离估计,则SAWRFID阅读器系统的模糊相位测量误差应不超过3°的系统指标要求。最后,通过实验验证了该方法在SAWRFID系统中的可实现性,结果表明所研制的系统当前能达到的距离估计均方根误差为16.7cm。