Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type...Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.展开更多
The impact safety of explosive charges has been focused in these decades. The fragment impact is widely used to evaluate the response of explosive charges. In our work, the explosive detonation driving technique was u...The impact safety of explosive charges has been focused in these decades. The fragment impact is widely used to evaluate the response of explosive charges. In our work, the explosive detonation driving technique was used to generate a high velocity fragment with large mass. When the fragment masses are10 g, 16 g, 25 g, and 50 g, the highest velocity of fragments can reach 2400 m/s, 2100 m/s, 1900 m/s, and1400 m/s, respectively. The high velocity fragment with large mass was used to evaluate the safety of two kinds of CL-20 based explosive charges. The effects of the fragment mass and velocity were analyzed.Especially, the reaction extent was obtained based on visible phenomenon. The CL-20-based explosive charge containing Al had a higher safety level than that without Al. It was because Al had good ductility,and further improved the mechanical property of the material. Also, the numerical simulation was conducted to understand the reaction characteristics of the CL-20-based explosive charge. The results showed that as the fragment mass and velocity increased, the reaction became more violent.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
Combined with the oxidizer anions and fuel cations,molecular perovskite energetic materials show a good potential.In this work,the combustion behavior and mechanism of metal fuel aluminium(Al)with molecular perovskite...Combined with the oxidizer anions and fuel cations,molecular perovskite energetic materials show a good potential.In this work,the combustion behavior and mechanism of metal fuel aluminium(Al)with molecular perovskite energetic material(H_(2)dabco)[NH4(ClO_(4))_(3)](DAP-4)as a high-energy oxidant was investigated.The DAP-4 based composites with metal fuel Al were designed and fabricated by the different mass ratios.Results showed that DAP-4 exhibits a good oxygen-supplied capacity for enhancing the combustion performance of Al.The maximum combustion heat of DAP-4/Al-3 at the Al/O mass ratio of 38:62 is up to 10,412 J/g in the inert gas,which is higher than those of other ratios and the mixtures of other energetic materials and Al.The evolution of pressure output,pressurization rate,and flame temperature was monitored for DAP-4/Al with different mass ratios.Composites DAP-4/Al/F were characterized by burning rates.The combustion reaction mechanism of metal fuel Al with DAP-4 as a high-energy oxidant was provided.DAP-4 was ignited firstly and released acid and oxidizing gases,which corroded Al_(2)O_(3)shells on Al particle surfaces and accelerated the combustion reaction with Al to release a lot of energy.This work offered a new idea that molecular perovskite energetic materials have great potential in the high-energy Al-based solid rocket propellants.展开更多
There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes th...There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes this kind of problem quite different from all sorts of existing job-selection modes. On the other hand, the human resources are always limited and men have different working capabilities on different items, which make the allocation operation of human resources be much roomy. However, the final total time span of maintenance is often required to be as short as possible in many practices, in order to suffer only the lowest cost of loss while the system is stopping. A new model for op-timizing the allocation if aircraft maintenance human resources with the constraint of predefined sequence is presented. The ge-netic algorithm is employed to find the optimal solution that holds the shortest total time span of maintenance. To generate the ul-timate maintenance work items and the human resource array, the sequences among all maintenance work items are considered firstly, the work item array is then generated through traversal with the constraint of maintenance sequence matrix, and the human resources are finally allocated according to the work item array with the constraint of the maintenance capability. An example is demonstrated to show that the model and algorithm behave a satisfying performance on finding the optimal solution as expected.展开更多
The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the d...The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52272208,22309057)the Natural Science Foundation of Hubei Province(Grant No.2023AFB355)the Fundamental Research Funds for the Central Universities of China(Grant No.2662022LXQD001).
文摘Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.
文摘The impact safety of explosive charges has been focused in these decades. The fragment impact is widely used to evaluate the response of explosive charges. In our work, the explosive detonation driving technique was used to generate a high velocity fragment with large mass. When the fragment masses are10 g, 16 g, 25 g, and 50 g, the highest velocity of fragments can reach 2400 m/s, 2100 m/s, 1900 m/s, and1400 m/s, respectively. The high velocity fragment with large mass was used to evaluate the safety of two kinds of CL-20 based explosive charges. The effects of the fragment mass and velocity were analyzed.Especially, the reaction extent was obtained based on visible phenomenon. The CL-20-based explosive charge containing Al had a higher safety level than that without Al. It was because Al had good ductility,and further improved the mechanical property of the material. Also, the numerical simulation was conducted to understand the reaction characteristics of the CL-20-based explosive charge. The results showed that as the fragment mass and velocity increased, the reaction became more violent.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
基金National Natural Science Foundation of China(Grant No.22175026,21975227,11902300)the Foundation of National Key Laboratory of Defense Science and Technology(Grant No.6142602210306)State Key Laboratory of Explosion Science and Technology(No.QNKT20-07)for the support。
文摘Combined with the oxidizer anions and fuel cations,molecular perovskite energetic materials show a good potential.In this work,the combustion behavior and mechanism of metal fuel aluminium(Al)with molecular perovskite energetic material(H_(2)dabco)[NH4(ClO_(4))_(3)](DAP-4)as a high-energy oxidant was investigated.The DAP-4 based composites with metal fuel Al were designed and fabricated by the different mass ratios.Results showed that DAP-4 exhibits a good oxygen-supplied capacity for enhancing the combustion performance of Al.The maximum combustion heat of DAP-4/Al-3 at the Al/O mass ratio of 38:62 is up to 10,412 J/g in the inert gas,which is higher than those of other ratios and the mixtures of other energetic materials and Al.The evolution of pressure output,pressurization rate,and flame temperature was monitored for DAP-4/Al with different mass ratios.Composites DAP-4/Al/F were characterized by burning rates.The combustion reaction mechanism of metal fuel Al with DAP-4 as a high-energy oxidant was provided.DAP-4 was ignited firstly and released acid and oxidizing gases,which corroded Al_(2)O_(3)shells on Al particle surfaces and accelerated the combustion reaction with Al to release a lot of energy.This work offered a new idea that molecular perovskite energetic materials have great potential in the high-energy Al-based solid rocket propellants.
文摘There are always large-scale items in the maintenances schedule of aircraft system, many of which have been fixed to be done in predefined sequences, which leads the workflow to be sys-tematically complex and makes this kind of problem quite different from all sorts of existing job-selection modes. On the other hand, the human resources are always limited and men have different working capabilities on different items, which make the allocation operation of human resources be much roomy. However, the final total time span of maintenance is often required to be as short as possible in many practices, in order to suffer only the lowest cost of loss while the system is stopping. A new model for op-timizing the allocation if aircraft maintenance human resources with the constraint of predefined sequence is presented. The ge-netic algorithm is employed to find the optimal solution that holds the shortest total time span of maintenance. To generate the ul-timate maintenance work items and the human resource array, the sequences among all maintenance work items are considered firstly, the work item array is then generated through traversal with the constraint of maintenance sequence matrix, and the human resources are finally allocated according to the work item array with the constraint of the maintenance capability. An example is demonstrated to show that the model and algorithm behave a satisfying performance on finding the optimal solution as expected.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The time-sequenced damage behavior of the reactive projectile impacting double-layer plates is discussed.The analytical model considering the combined effect of kinetic and chemical energy is developed to reveal the damage mechanism.The influences of impact velocity and reactive projectile chemical characteristics on the damage effect are decoupled analyzed based on this model.These analyses indicate that the high energy releasing efficiency and fast reaction propagation velocity of the reactive projectile are conducive to enhancing the damage effect.The experiments with various reactive projectiles impact velocity increasing from 702 to 1385 m/s were conducted to verify this model.The experimental results presented that,the damage hole radius of the rear-plate increases with the increase of impact velocity.At the impact velocity of 1350 m/s,the radius of damage hole formed by PTFE/Al/Bi_(2)O_(3),PTFE/Al/MoO_(3),PTFE/Al/Fe_(2)O_(3)projectile on the rear-plate become smaller in sequence.These results are consistent with the analytical model prediction,demonstrating that this model can predict the damage effect quantitatively.This work is of constructive significance to the application of reactive projectiles.