Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates....Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12074411)the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Swiss National Science Foundation(Grant No.200021_188564)。
文摘Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.