The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective appr...The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective approach in removing the unstable surface oxygen while maintaining the high porosity of carbon matrix. However, the exact evolution mechanism of various oxygen species during this process, as well as the correlation with electrochemical properties, is still under development. Herein, biomass-based porous carbon is adopted as the model material to trace its structure evolution of oxygen removal under hydrogen thermal reduction process with the temperature range of 400–800 °C. The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700°C. XPS, TPRMS and Boehm titration results indicate that the oxygen elimination undergoes three distinctive stages(intermolecular dehydration, hydrogenation and decomposition reactions). The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700 °C. Benefiting from the stable electrochemical interface and the optimized porous structure, the as-obtained HAC-700 exhibit significantly suppressed self-discharge and leak current, with improved cycling stability, which is attributable to the stabilization of electrochemical interface between carbon surface and electrolyte. The result provides insights for rational design of surface chemistry for high-performance carbon electrode towards advanced energy storage.展开更多
In this work, a series of carbon aerogel microspheres(CAMs) with tailored pore structures were successfully prepared via a sol-gel method and subsequent heat-treatment at various temperatures from 600 to 1600 ℃. Th...In this work, a series of carbon aerogel microspheres(CAMs) with tailored pore structures were successfully prepared via a sol-gel method and subsequent heat-treatment at various temperatures from 600 to 1600 ℃. The effects of heat-treatment temperature(HTT) on the CAM microstructure were systematically investigated by physical and chemical characterization. The electrical conductivity increased by up to 250 S/cm and mesopores with high electrolyte accessibility developed in the CAM with increasing HTT. However, the specific surface area(SSA) decreased for HTTs from 1000 to 1600 ℃. The results show that these two factors should be finely balanced for further applications in high power supercapacitors.The CAMs carbonized at 1000 ℃ had the highest SSA(1454 m^2/g), large mesoporous content(20%) and favorable conductivity(71 S/cm). They delivered a high energy density of 38.4 Wh/kg at a power density of 0.17 kW/kg. They retained an energy density of 25.5 Wh/kg even at a high power density of 10.2 kW/kg,and a good rate capability of 84% after 10,000 cycles. This performance is superior to, or at least comparable to, those of most reported carbon materials.展开更多
The incorporation of boron into carbon material can significantly enhance its capacity performances.However,the origin of the promotion effect of boron doping on electrochemical performances is still unclear,in part d...The incorporation of boron into carbon material can significantly enhance its capacity performances.However,the origin of the promotion effect of boron doping on electrochemical performances is still unclear,in part due to the inadequate exposure of boron configurations resulting from the complexity of traditional carbon materials.To overcome this issue,herein,a series of boron-doped graphene with highly-exposed boron configurations are prepared by tuning annealing temperature.Then the correlation between boron configurations and the electrochemical performances is investigated.The combination of density-functional theory(DFT)computation and NH3-TPD/Py-FTIR indicates that the BCO_(2)configuration formed on the surface of graphene is easier to accept lone-pair electrons than BC_(2)O and BC_(3)configurations due to the stronger Lewis acidity.Such an electronic structure can effectively reduce the number of unstable electron donors and stabilize the electrochemical interface,which is proved by NMR,and critical for improving the electrochemical performances.Further experiments confirm that the optimized BG800 with the largest amount of BCO_(2)configuration presents ultralow leak current,improved cyclic stability,and better rate performance in SBPBF4/PC.This work would provide an insight into the design of high-performance boron-doped carbon materials towards energy storage.展开更多
基金supported by the National Natural Science Foundation of China (21922815, 51802325)the Natural Science Foundation of Shanxi Province (201901D211585)+2 种基金the Scientific and Technological Key Project of Shanxi Province (20191102003)the Patent Promotion and Implementation Project of Shanxi Province (20200716)the Key Research and Development (R&D) Projects of Shanxi Province (201903D121007)。
基金National Science Foundation for Excellent Young Scholars of China (21922815)Key Research and Development (R&D) Projects of Shanxi Province (201903D121007)+3 种基金Natural Science Foundations of Shanxi Province (201801D221156)DNL Cooperation Fund of CAS (DNL180308)Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-068)Youth Innovation Promotion Association of CAS。
文摘The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective approach in removing the unstable surface oxygen while maintaining the high porosity of carbon matrix. However, the exact evolution mechanism of various oxygen species during this process, as well as the correlation with electrochemical properties, is still under development. Herein, biomass-based porous carbon is adopted as the model material to trace its structure evolution of oxygen removal under hydrogen thermal reduction process with the temperature range of 400–800 °C. The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700°C. XPS, TPRMS and Boehm titration results indicate that the oxygen elimination undergoes three distinctive stages(intermolecular dehydration, hydrogenation and decomposition reactions). The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700 °C. Benefiting from the stable electrochemical interface and the optimized porous structure, the as-obtained HAC-700 exhibit significantly suppressed self-discharge and leak current, with improved cycling stability, which is attributable to the stabilization of electrochemical interface between carbon surface and electrolyte. The result provides insights for rational design of surface chemistry for high-performance carbon electrode towards advanced energy storage.
基金supported by the National Natural Science Foundation of China (51402324, 51002166 and 51402325)
文摘In this work, a series of carbon aerogel microspheres(CAMs) with tailored pore structures were successfully prepared via a sol-gel method and subsequent heat-treatment at various temperatures from 600 to 1600 ℃. The effects of heat-treatment temperature(HTT) on the CAM microstructure were systematically investigated by physical and chemical characterization. The electrical conductivity increased by up to 250 S/cm and mesopores with high electrolyte accessibility developed in the CAM with increasing HTT. However, the specific surface area(SSA) decreased for HTTs from 1000 to 1600 ℃. The results show that these two factors should be finely balanced for further applications in high power supercapacitors.The CAMs carbonized at 1000 ℃ had the highest SSA(1454 m^2/g), large mesoporous content(20%) and favorable conductivity(71 S/cm). They delivered a high energy density of 38.4 Wh/kg at a power density of 0.17 kW/kg. They retained an energy density of 25.5 Wh/kg even at a high power density of 10.2 kW/kg,and a good rate capability of 84% after 10,000 cycles. This performance is superior to, or at least comparable to, those of most reported carbon materials.
基金the National Science Foundation for Excellent Young Scholars of China(21922815)the Key Research and Development(R&D)Projects of Shanxi Province(201903D121007)+3 种基金the Natural Science Foundations of Shanxi Province(201801D221156)the DNL Cooperation Fund of CAS(DNL180308)the Science and Technology Service Network Initiative of CAS(KFJ-STS-ZDTP-068)the Youth Innovation Promotion Association of CAS。
文摘The incorporation of boron into carbon material can significantly enhance its capacity performances.However,the origin of the promotion effect of boron doping on electrochemical performances is still unclear,in part due to the inadequate exposure of boron configurations resulting from the complexity of traditional carbon materials.To overcome this issue,herein,a series of boron-doped graphene with highly-exposed boron configurations are prepared by tuning annealing temperature.Then the correlation between boron configurations and the electrochemical performances is investigated.The combination of density-functional theory(DFT)computation and NH3-TPD/Py-FTIR indicates that the BCO_(2)configuration formed on the surface of graphene is easier to accept lone-pair electrons than BC_(2)O and BC_(3)configurations due to the stronger Lewis acidity.Such an electronic structure can effectively reduce the number of unstable electron donors and stabilize the electrochemical interface,which is proved by NMR,and critical for improving the electrochemical performances.Further experiments confirm that the optimized BG800 with the largest amount of BCO_(2)configuration presents ultralow leak current,improved cyclic stability,and better rate performance in SBPBF4/PC.This work would provide an insight into the design of high-performance boron-doped carbon materials towards energy storage.