期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于三元闭包的节点相似性链路预测算法 被引量:11
1
作者 高杨 张燕平 +1 位作者 钱付兰 赵姝 《计算机科学与探索》 CSCD 北大核心 2017年第5期822-832,共11页
链路预测作为复杂网络分析的基本方法被应用到很多领域,完全基于拓扑结构信息的复杂网络链路预测仍然是一个具有挑战性的问题。三元闭包作为网络中最小局部结构,具有结构平衡和稳定的特征。提出了一种基于三元闭包的节点相似性链路预测... 链路预测作为复杂网络分析的基本方法被应用到很多领域,完全基于拓扑结构信息的复杂网络链路预测仍然是一个具有挑战性的问题。三元闭包作为网络中最小局部结构,具有结构平衡和稳定的特征。提出了一种基于三元闭包的节点相似性链路预测算法,通过计算出每个节点在网络中所占三元闭包的权重,并将该权重用于节点相似性指标中,提出了3个相似性指标TWCN、TWAA、TWRA和具有调节参数的3个相似性指标TWCN*、TWAA*、TWRA*。在10个不同的网络数据集上的实验结果表明,所提算法能够提高链路预测的精度。不仅如此,通过分析实验结果,发现在社交网络中拥有较多三元闭包的节点具有局部稳定性,不倾向于建立更多的新链接;相反,拥有较少三元闭包的节点具有局部不稳定性,倾向于建立更多的新链接。这种现象也符合社会学中有关弱关系产生链接的现象。 展开更多
关键词 复杂网络 链路预测 三元闭包 节点权重
在线阅读 下载PDF
基于深度混合模型评分推荐 被引量:7
2
作者 钱付兰 李建红 +1 位作者 赵姝 张燕平 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第5期592-598,共7页
从用户?项目评分矩阵中学习用户对项目的个性化偏好,对于评分推荐来说至关重要。许多推荐方法如潜在因子模型,无法充分利用评分矩阵中的交互信息学到较好的个性化偏好而得到较差推荐效果。受深度学习中Wide and Deep模型应用于APP推荐启... 从用户?项目评分矩阵中学习用户对项目的个性化偏好,对于评分推荐来说至关重要。许多推荐方法如潜在因子模型,无法充分利用评分矩阵中的交互信息学到较好的个性化偏好而得到较差推荐效果。受深度学习中Wide and Deep模型应用于APP推荐启发,本文提出一种深度混合模型并命名为DeepHM用于评分推荐。与Wide and Deep模型相比,使用DeepWide和DNN部分重构Wide模型和Deep模型得到DeepHM,并且DeepWide和DNN部分共享交互信息输入。因此,DeepHM可以更有效地使用评分矩阵中的用户和项目的交互信息学到个性化偏好信息。DeepHM将评分推荐作为分类问题旨在提高推荐准确性。实验表明在公开的Movielens数据集上DeepHM算法相比现有的基于评分推荐模型具有更好的效果。 展开更多
关键词 深度学习 推荐算法 评分推荐
在线阅读 下载PDF
基于局部概率解的免疫遗传影响力最大化算法 被引量:4
3
作者 钱付兰 徐涛 +1 位作者 赵姝 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第5期783-791,共9页
影响力最大化问题是在复杂社会网络中选择一小部分用户在特定传播模型下最大化影响扩散。基于贪心的蒙特卡洛模拟方法在理论上保证近乎最优的解决方案,但算法运行效率很低。虽然已经开发出许多没有理论保证的启发式方法,但都大大降低了... 影响力最大化问题是在复杂社会网络中选择一小部分用户在特定传播模型下最大化影响扩散。基于贪心的蒙特卡洛模拟方法在理论上保证近乎最优的解决方案,但算法运行效率很低。虽然已经开发出许多没有理论保证的启发式方法,但都大大降低了解决方案的质量。为解决该问题,提出局部概率解策略计算节点集的影响力,其性能近似于蒙特卡洛模拟,并且提出基于免疫遗传的影响力最大化算法。在4个真实数据集上的实验表明所提算法在解决影响力最大化问题上的高效性。在影响力传播范围上,和当前表现最好的CELF算法有极其相近的性能,且运行效率比CELF算法快大约5个数量级。 展开更多
关键词 社会网络 影响力最大化 蒙特卡洛模拟 免疫遗传
在线阅读 下载PDF
加权好友推荐模型链路预测算法 被引量:3
4
作者 钱付兰 杨强 +1 位作者 马闯 张燕平 《计算机科学与探索》 CSCD 北大核心 2019年第3期383-393,共11页
链路预测是复杂网络的一个重要研究方向。基于节点结构相似性进行链路预测是目前常用的方法。真实网络中存在大量的局部群落结构,针对不同的网络结构构建算法是链路预测的核心问题。利用社交网络好友推荐策略,中介人倾向于将自己更熟悉... 链路预测是复杂网络的一个重要研究方向。基于节点结构相似性进行链路预测是目前常用的方法。真实网络中存在大量的局部群落结构,针对不同的网络结构构建算法是链路预测的核心问题。利用社交网络好友推荐策略,中介人倾向于将自己更熟悉的人介绍给目标用户,提出了一种节点相似性度量指标。该指标结合局部特征描述并有效区分了用户节点之间影响力的不同,更适用于一类特定的局部群落结构。依据该指标提出的加权好友推荐模型链路预测算法在12个数据集上的实验结果表明,该算法在AUC和Precision两个评价标准上具有明显优势。 展开更多
关键词 复杂网络 好友推荐 链路预测 相似性指标
在线阅读 下载PDF
基于层次保留的知识图谱嵌入链路预测方法 被引量:1
5
作者 钱付兰 王文学 +2 位作者 郑文杰 陈洁 赵姝 《计算机科学与探索》 CSCD 北大核心 2023年第9期2174-2183,共10页
知识图谱嵌入(KGE)是预测知识图谱(KGs)中缺失链接的重要工具,它将知识图谱中的实体和关系嵌入到连续低维空间中,并尽可能地保留原数据中隐含的各种信息。近年来,一些知识图谱嵌入方法利用极坐标系对知识图谱中普遍存在的语义层次结构... 知识图谱嵌入(KGE)是预测知识图谱(KGs)中缺失链接的重要工具,它将知识图谱中的实体和关系嵌入到连续低维空间中,并尽可能地保留原数据中隐含的各种信息。近年来,一些知识图谱嵌入方法利用极坐标系对知识图谱中普遍存在的语义层次结构进行建模,提升了链路预测任务的性能。然而,这些方法在建模关系时,使用了简单的标度变换并过度关注于实体的层次差,这在一定程度上限制了模型的拟合力。为了应对上述问题,提出了基于层次保留的知识图谱嵌入方法(RHKE),它在建模知识图谱中的关系时考虑了实体本身的层次。具体来说,提出了混合变换,它包含一个倍率项和一个偏差项,当实体层次较低或较高时,标度变换主要受偏差项或倍率项影响。此外,由于变换后模型丢失了实体原本的层次,RHKE使用层次修正项,它将头尾实体的原本层次用不同比例组合后作为关系的附加信息。在多个公开数据集上的实验结果显示,RHKE在链路预测上的性能优于现有的语义层次模型。 展开更多
关键词 知识图谱嵌入(KGE) 链路预测 语义层次 极坐标系
在线阅读 下载PDF
基于路径相互关注的网络嵌入算法
6
作者 钱付兰 黄鑫 +1 位作者 赵姝 张燕平 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期573-580,共8页
网络嵌入,或者称为网络表示学习,旨在将网络中的节点映射到表示空间中,生成低维稠密的向量,从而在保留网络结构信息的前提下对网络中的节点进行表示,而后通过已有的机器学习方法解决诸如链接预测、节点分类、社团发现和网络可视化等下... 网络嵌入,或者称为网络表示学习,旨在将网络中的节点映射到表示空间中,生成低维稠密的向量,从而在保留网络结构信息的前提下对网络中的节点进行表示,而后通过已有的机器学习方法解决诸如链接预测、节点分类、社团发现和网络可视化等下游任务.随机游走算法可以很好地探索网络中节点的局部结构,然而之前的基于随机游走的表示学习算法只能为节点产生一种角色嵌入,没有考虑到和不同邻居进行交互时节点扮演的不同角色嵌入.因此,提出一种基于路径相互关注的网络嵌入算法,使用节点随机游走产生的上下文信息,通过注意力机制为每个节点生成上下文相互关注的节点嵌入.在真实数据集上的实验结果表明,与三个经典的网络嵌入算法相比,该算法具有更好的表现。 展开更多
关键词 网络表示学习 随机游走 相互关注 注意力机制
在线阅读 下载PDF
基于双重最相关注意力网络的协同过滤推荐算法 被引量:10
7
作者 张文龙 钱付兰 +2 位作者 陈洁 赵姝 张燕平 《计算机应用》 CSCD 北大核心 2020年第12期3445-3450,共6页
基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导... 基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导致这些推荐方法的准确性受限。针对上述问题,提出了一种基于双重最相关注意力网络的协同过滤推荐算法,该算法包含两层注意力网络。首先,使用项目级注意力网络为不同历史项目分配不同的权重来捕获用户历史交互项目中最相关的项目;然后,使用项目交互级注意力网络感知不同历史项目与目标项目之间的交互关联度;最后,通过两层注意力网络的使用来同时捕获用户在历史交互项目上和目标项目上的细粒度偏好,从而更好地进行下一步推荐工作。在MovieLens和Pinterest两个真实数据集上进行实验,实验结果表明,所提算法在推荐命中率上与基准模型基于深度学习的项目协同过滤(DeepICF)算法相比分别提升了2.3个百分点和1.5个百分点,验证了该算法在为用户进行个性化推荐上的有效性。 展开更多
关键词 推荐系统 协同过滤 深度学习 隐式反馈 注意力机制
在线阅读 下载PDF
结合共同邻居贡献度的节点相似性链路预测算法 被引量:5
8
作者 王鑫 陈喜 +1 位作者 钱付兰 张燕平 《数据采集与处理》 CSCD 北大核心 2018年第5期900-910,共11页
链路预测是复杂网络的一个重要研究方向,基于节点相似性的链路预测方法是最为常用的一种方法。目前大部分使用节点链接紧密度的节点相似性链路预测方法,未考虑每个共同邻居节点的差异性,即不同的节点对连边的贡献度是不同的。本文提出... 链路预测是复杂网络的一个重要研究方向,基于节点相似性的链路预测方法是最为常用的一种方法。目前大部分使用节点链接紧密度的节点相似性链路预测方法,未考虑每个共同邻居节点的差异性,即不同的节点对连边的贡献度是不同的。本文提出一种结合共同邻居节点之间的节点贡献度和链接紧密度的链路预测算法。该算法首先计算共同邻居节点之间的链接信息作为节点的链接紧密度,再定义耦合度聚簇系数表示共同邻居节点贡献度,最终将二者结合。在实际数据集上的实验结果表明,该算法比4种经典的链路预测算法(CN,AA,RA和Jaccard)和基于节点链接密度的算法CNBIDE具有更好的预测精度。 展开更多
关键词 复杂网络 链路预测 贡献度 紧密度 节点相似性
在线阅读 下载PDF
分层递阶的网络结构洞占据者挖掘及分析 被引量:2
9
作者 崔平平 赵姝 +3 位作者 陈洁 钱付兰 张以文 张燕平 《中文信息学报》 CSCD 北大核心 2018年第4期95-104,共10页
结构洞是在社会网络信息传播中占据重要位置的一类关键节点。据研究,5%的结构洞控制着50%的信息传播。学者们研究了单一粒度网络下结构洞的挖掘方法及分析,然而很多网络存在分层递阶的多粒度结构特性,对分层递阶网络的结构洞挖掘和分析... 结构洞是在社会网络信息传播中占据重要位置的一类关键节点。据研究,5%的结构洞控制着50%的信息传播。学者们研究了单一粒度网络下结构洞的挖掘方法及分析,然而很多网络存在分层递阶的多粒度结构特性,对分层递阶网络的结构洞挖掘和分析具有现实意义。因此,该文提出了一种分层递阶网络的多粒度结构洞挖掘方法 HI-SH,并对不同粒度下的结构洞进行了分析。在该方法中,首先对网络进行多粒度社团划分,得到每一粒度下网络的社团;然后,根据两级信息传播理论,使用单一粒度下结构洞挖掘算法,挖掘每一粒度下top-k结构洞。在公用数据Topic16和真实数据上进行了实验,结果表明,网络的结构洞是动态变化的,单一粒度下的结构洞排名不能代表整个网络的结构洞排名。 展开更多
关键词 结构洞 多粒度 分层递阶网络 社团划分
在线阅读 下载PDF
基于变分自编码器的评分预测模型 被引量:2
10
作者 陈海 钱付兰 +2 位作者 陈洁 赵姝 张燕平 《计算机工程与应用》 CSCD 北大核心 2021年第22期153-159,共7页
深度学习模型具有鲁棒性差的局限性,常见的如在图片中增加特定的噪声会影响到图片的分类和预测结果。近期有学者将深度学习引入到推荐系统中,因此在推荐系统中也存在噪声对推荐精度影响的问题。针对深度推荐模型的鲁棒性问题,基于变分... 深度学习模型具有鲁棒性差的局限性,常见的如在图片中增加特定的噪声会影响到图片的分类和预测结果。近期有学者将深度学习引入到推荐系统中,因此在推荐系统中也存在噪声对推荐精度影响的问题。针对深度推荐模型的鲁棒性问题,基于变分自编码器(Variational Auto-Encoder,VAE)提出了新的评分预测模型REVAE(REcommender Variational Auto-Encoder)。该模型为了训练模型对噪声干扰的鲁棒性,在传统的VAE上增加了一层隐层表示,利用后验分布对隐层表示进行约束,并在该隐层上增加了噪声,通过重构输入数据,训练得到具有抗噪能力的推荐算法模型。在公开的Movielens数据集上进行的实验结果表明,REVAE可以有效降低噪声对模型的干扰,使得整个模型更具有健壮性,相比其他评分预测算法具有更好的推荐效果。 展开更多
关键词 深度学习 推荐系统 变分自编码器(VAE) 评分预测
在线阅读 下载PDF
基于卷积神经网络交互的用户属性偏好建模的推荐模型 被引量:2
11
作者 潘仁志 钱付兰 +1 位作者 赵姝 张燕平 《计算机应用》 CSCD 北大核心 2022年第2期404-411,共8页
潜在因子模型(LFM)以其优异的性能在推荐领域得到了广泛应用。在LFM中除了使用交互数据以外,辅助信息也被引入用于解决数据稀疏的问题,从而提升推荐的性能。然而,大多数LFM仍然存在一些问题:第一,LFM在对用户进行建模时,忽略了用户如何... 潜在因子模型(LFM)以其优异的性能在推荐领域得到了广泛应用。在LFM中除了使用交互数据以外,辅助信息也被引入用于解决数据稀疏的问题,从而提升推荐的性能。然而,大多数LFM仍然存在一些问题:第一,LFM在对用户进行建模时,忽略了用户如何根据其特征偏好对项目作出决策;第二,采用内积的特征交互假设特征维度之间是相互独立的,而没有考虑到特征维度之间的关联。针对上述问题,提出一种新的推荐模型:基于卷积神经网络(CNN)交互的用户属性偏好建模的推荐模型(UAMC)。该模型首先获得用户的一般偏好、用户属性和项目嵌入,然后将用户属性和项目嵌入进行交互,以探索用户不同的属性对不同项目的偏好;接着将交互过的用户偏好属性送入CNN层来探索不同偏好属性的不同维度的关联,从而得到用户的属性偏好向量;接着使用注意力机制结合用户的一般偏好和CNN层得到的属性偏好,从而获得用户的向量表示;最后采用点积来计算用户对项目的评分。在Movielens-100K、Movielens-1M和Book-crossing这三个真实的数据集上进行了实验。实验结果表明,所提模型在均方根误差(RMSE)上与稀疏数据预测的神经网络分解机(NFM)模型相比分别降低了1.75%、2.78%和0.25%,验证了在LFM的评分预测推荐中,UAMC在提升推荐精度上的有效性。 展开更多
关键词 潜在因子模型 用户偏好 用户属性偏好 卷积神经网络 特征交互 注意力机制
在线阅读 下载PDF
联合多层注意力网络矩阵分解的推荐算法 被引量:4
12
作者 李建红 黄雅凡 +5 位作者 王成军 丁云霞 郑文军 李建华 钱付兰 赵鑫 《中文信息学报》 CSCD 北大核心 2022年第3期120-127,共8页
许多推荐算法如基于矩阵分解因无法充分挖掘用户对项目的偏好信息而无法取得令人满意的推荐效果。为了解决上述问题,该文设计了两个模块,首先,利用多层感知机技术学习输入的信息以获得较好的特征表示,在原始输入时通过点积操作得到关系... 许多推荐算法如基于矩阵分解因无法充分挖掘用户对项目的偏好信息而无法取得令人满意的推荐效果。为了解决上述问题,该文设计了两个模块,首先,利用多层感知机技术学习输入的信息以获得较好的特征表示,在原始输入时通过点积操作得到关系信息,并将其命名为深度矩阵分解(DeepMF);其次,在多层感知机中加入多层注意力网络,这样能够得到用户对项目的偏好信息。此外,点积操作应用于输出前是为了获得特征表达的关系信息,这一模块名为深度注意力矩阵分解(DeepAMF)。通过结合两个模块的优势得到联合多层注意力网络矩阵分解算法(MAMF),在四个公开数据集上的实验证明了MAMF算法的有效性。 展开更多
关键词 矩阵分解 多层注意力 联合模型
在线阅读 下载PDF
Black⁃box adversarial attacks with imperceptible fake user profiles for recommender systems
13
作者 qian fulan Liu Jinggang +3 位作者 Chen Hai Chen Wenbin Zhao Shu Zhang Yanping 《南京大学学报(自然科学版)》 CSCD 北大核心 2024年第6期881-899,共19页
Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attacke... Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black‐box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS‐KL that combines pre‐gradient‐guided momentum gradient optimization strategy and fake user generation constrained by Kullback‐Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state‐of‐the‐art gradient‐based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data. 展开更多
关键词 recommendation systems adversarial examples transferability imperceptible
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部