To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleratio...In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds.Using the ABAQUS finite element calculation software,a train load is applied through the FORTRAN subroutine,thereby establishing a three-dimensional finite element model with the same size as the model experiment.The data and conclusions of the finite element method model are verified by the model experiment.The model also makes some supplements to the model experiment.The experimental results show that with the increase of speed,the peak acceleration and earth pressure of the embankment also increase.By analyzing the experimental data,it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration.In addition,the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration.展开更多
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
基金Project(2018YFE0207100)supported by the National Key R&D Program of ChinaProject(52078426)supported by the National Natural Science Fundation of China+4 种基金Projects(2020YJ0253,2020YFSY0060,2019JDRC0133,2019JDRC0134)supported by the Sichuan Provincial Science and Technology Support Project,ChinaProject(K2019G009)supported by the Science and Technology Research and Development Plan of China National Railway Corporation LimitedProjects(SY2016G003,N2020T004)supported by the China National Railway Group Co.Ltd.Scientific Research ProjectProject(LNTCCMA-20210109)supported by the Key Laboratory of New Technology for Construction of Cities in Mountain Area,ChinaProject(2021M692689)supported by the China Postdoctoral Science Foundation。
文摘In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles,a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds.Using the ABAQUS finite element calculation software,a train load is applied through the FORTRAN subroutine,thereby establishing a three-dimensional finite element model with the same size as the model experiment.The data and conclusions of the finite element method model are verified by the model experiment.The model also makes some supplements to the model experiment.The experimental results show that with the increase of speed,the peak acceleration and earth pressure of the embankment also increase.By analyzing the experimental data,it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration.In addition,the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration.