期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO_(2) to formate 被引量:2
1
作者 Runze Ye Jiaye Zhu +2 位作者 Yun Tong Dongmei Feng pengzuo chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期180-188,I0007,共10页
Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity ... Electrochemical reduction of Bi-based metal oxides is regarded as an effective strategy to rationally design advanced electrocatalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR).Realizing high selectivity at high current density is important for formate production,but remains challenging.Herein,the BiIn hybrid electrocatalyst,deriving from the Bi2O3/In2O3heterojunction(MOD-Biln),shows excellent catalytic performance for CO_(2)RR.The Faradaic efficiency of formate(FEHCOO-) can be realized over 90% at a wide potential window from-0.4 to-1.4 V vs.RHE,while the partial current density of formate(jHCOO-) reaches about 136.7 mA cm^(-2)at-1.4 V in flow cell without IR-compensation.In additio n,the MOD-Biln exhibits superior stability with high selectivity of formate at 100 mA cm^(-2).Systematic characterizations prove the optimized catalytic sites and interface charge transfer of MOD-Biln,while theoretical calculation confirms that the hybrid structure with dual Bi/In metal sites contribute to the optimal free energy of*H and*OCHO intermediates on MOD-Biln surface,thus accelerating the formation and desorption step of*HCOOH to final formate production.Our work provides a facile and useful strategy to develop highly-active and stable electrocatalysts for CO_(2)RR. 展开更多
关键词 Metal oxide derivation Hybrid electrocatalyst Dual metal sites Electrocatalytic CO_(2)RR Formate product
在线阅读 下载PDF
Nickel-copper alloying arrays realizing efficient co-electrosynthesis of adipic acid and hydrogen
2
作者 Xuhui Ren Qianyu Zhang +4 位作者 Yun Tong Guorong Zhou Cong Lin Yanying Zhao pengzuo chen 《Journal of Energy Chemistry》 2025年第2期7-15,I0001,共10页
Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems.However,the development o... Constructing electrocatalytic overall reaction technology to couple the electrosynthesis of adipic acid with energy-saving hydrogen production is of significant for sustainable energy systems.However,the development of highly-active bifunctional electrocatalysts remains a challenge.Herein,3D hierarchical nickel-copper alloying arrays with dendritic morphology are manufactured by a simple electrodeposition process,standing for the excellent bifunctional electrocatalyst towards the co-production of adipic acid and H_(2)from cyclohexanone and water.The membrane-free flow electrolyzer of Cu_(0.81)Ni_(0.19)/NF shows the superior electrooxidation performance of ketone-alcohol(KA)oil with high faradaic efficiencies of over 90%for adipic acid and H_(2),robust stability over 200 h as well as a high yield of 0.6 mmol h^(-1) for adipic acid at 100 mA cm^(-2).In-situ spectroscopy indicates the Cu_(0.81)Ni_(0.19)alloy contributes to forming more active NiOOH species to involve in the conversion of cyclohexanone to adipic acid,while the proposed reaction pathway undergoes the 2-hydroxycyclohexanone and 2,7-oxepanedione intermediates.Moreover,the theoretical calculations confirm that the optimal electronic interaction,boosted reaction kinetics as well as improved adsorption free energy of reaction intermediates,synergistically endows Cu_(0.81)Ni_(0.19)alloy with superior bifunctional performance. 展开更多
关键词 Cu_(0.81)Ni_(0.19)alloy Adipic acid Hydrogen fuel Cyclohexanone oxidation reaction Hydrogen evolution reaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部