期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
1
作者 许慧敏 高敬格 +3 位作者 贾鹏英 冉俊霞 陈俊宇 李金懋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期539-544,共6页
Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often ope... Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often operates in a filamentary mode. Compared to the filamentary mode, the diffuse mode is more desirable for applications. Hence, many efforts have been exerted to accomplish the diffuse mode of the argon plasma jet. In this paper, a novel single-needle argon plasma jet is developed to obtain the diffuse mode. It is found that the plasma jet operates in the filamentary mode when the distance from the needle tip to the central line of the argon stream(d) is short. It transits to the diffuse mode with increasing d. For the diffuse mode, there is always one discharge pulse per voltage cycle, which initiates at the rising edge of the positive voltage. For comparison, the number of discharge pulse increases with an increase in the peak voltage for the filamentary mode. Fast photography reveals that the plasma plume in the filamentary mode results from a guided positive streamer,which propagates in the argon stream. However, the plume in the diffuse mode originates from a branched streamer, which propagates in the interfacial layer between the argon stream and the surrounding air. By optical emission spectroscopy,plasma parameters are investigated for the two discharge modes, which show a similar trend with increasing d. The diffuse mode has lower electron temperature, electron density, vibrational temperature, and gas temperature compared to the filamentary mode. 展开更多
关键词 plasma jet diffuse mode filamentary mode optical emission spectroscopy
在线阅读 下载PDF
Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry 被引量:1
2
作者 贾鹏英 贾焓潇 +4 位作者 冉俊霞 吴凯玥 武珈存 庞学霞 李雪辰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期342-348,共7页
Surface hydrophilicity improvement of titanium(Ti)is of great significance for the applications of the important biomaterial.In this study,efficient hydrophilicity on the Ti surface is improved by an air plasma jet ge... Surface hydrophilicity improvement of titanium(Ti)is of great significance for the applications of the important biomaterial.In this study,efficient hydrophilicity on the Ti surface is improved by an air plasma jet generated by a microhollow cathode discharge(MHCD)geometry.Elementary discharge aspects of the plasma jet and surface characteristics of the Ti surface are investigated by varying dissipated power(P_(d)).The results show that the plasma jet can operate in a pulsed mode or a continuous mode,depending on P_(d).The plume length increases with Pdand air flow rate increasing.By optical emission spectroscopy,plasma parameters as a function of Pdare investigated.After plasma treatment,water contact angel(WCA)of the Ti sample decreases to a minimum value of 15°with Pdincreasing.In addition,the surface topography,roughness,and content of chemical composition are investigated by scanning electron microscopy(SEM),atomic force microscopy(AFM),and x-ray photoelectron spectroscopy(XPS)with Pdincreasing.The results show that Ti-O bond and O-H group on the Ti surface are beneficial to the improvement of the hydrophilicity of Ti surface. 展开更多
关键词 plasma jet plasma treatment plasma parameters discharge aspects
在线阅读 下载PDF
Simulation on atmospheric pressure barrier discharge with varying relative position between two wavy dielectric surfaces
3
作者 Xue-Chen Li Wen-Jie Wan +8 位作者 Xiao-Qian Liu Mo Chen Kai-Yue Wu Jun-Xia Ran Xue-Xia Pang Xue-Xue Zhang jia-Cun Wu peng-ying jia Hui Sun 《Chinese Physics B》 2025年第3期474-481,共8页
As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is nume... As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is numerically simulated in atmospheric pressure helium mixed with trace nitrogen based on a fluid model.With varying relative position(phase difference(Δφ))of the wavy surfaces,there is a positive discharge and a negative discharge per voltage cycle,each of which consists of a pulse stage and a hump stage.For the pulse stage,maximal current increases with increasingΔφ.Results show that DBD with the wavy surfaces appears as discrete micro-discharges(MDs),which are self-organized to different patterns with varyingΔφ.The MDs are vertical and uniformly-spaced withΔφ=0,which are self-organized in pairs withΔφ=π/4.These MD pairs are merged into some bright wide MDs withΔφ=π/2.In addition,narrow MDs appear between tilted wide MDs withΔφ=3π/4.WithΔφ=π,the pattern is composed of wide and narrow MDs,which are vertical and appear alternately.To elucidate the formation mechanism of the patterns with differentΔφ,temporal evolutions of electron density and electric field are investigated for the positive discharge.Moreover,surface charge on the wavy dielectric layers has also been compared with differentΔφ. 展开更多
关键词 dielectric barrier discharge wavy dielectric surface micro-discharge fluid model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部