期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In situ luminescence measurements of GaN/Al_(2)O_(3) film under different energy proton irradiations
1
作者 蒋文丽 欧阳潇 +6 位作者 仇猛淋 英敏菊 陈琳 庞盼 张春雷 张耀锋 廖斌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期704-710,共7页
Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within... Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained. 展开更多
关键词 ion beam-induced luminescence(IBIL) GaN/Al_(2)O_(3) ion beam
在线阅读 下载PDF
Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments 被引量:2
2
作者 Shao-Jun Zhang Yuan-Yuan Liu +5 位作者 Sha-Sha Lv Jian-Ping Cheng Bin Liao pan pang Zhi Deng Li He 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第7期37-47,共11页
Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for re... Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties. 展开更多
关键词 Surface modification Polytetrafluoroethylene Ion implantation Surface metallization Low temperature resistance
在线阅读 下载PDF
Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX 被引量:1
3
作者 Yuanyuan Liu Jianping Cheng +8 位作者 pan pang Bin Liao Bin Wu Minju Ying Fengshou Zhang Lin Chen Shasha Lv Yandong Liu Tianxi Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期72-76,共5页
Herein we report a prototypical electronic substrate specifically designed to serve the weakly interacting massive particles(WIMPs)detectors at the China Dark Matter Experiment(CDEX).Because the bulky high-purity germ... Herein we report a prototypical electronic substrate specifically designed to serve the weakly interacting massive particles(WIMPs)detectors at the China Dark Matter Experiment(CDEX).Because the bulky high-purity germanium(HPGe)detectors operate under liquid-nitrogen temperatures and ultralow radiation backgrounds,the desired electronic substrates must maintain high adhesivity across different layers in such cold environment and be free from any radioactive nuclides.To conquer these challenges,for the first time,we employed polytetrafluoroethylene((C2F4)n)foil as the base substrate,in conjunction with ion implantation and deposition techniques using an independently developed device at Beijing Normal University for surface modification prior to electroplating.The remarkable peeling strengths of 0.88±0.06 N/mm for as-prepared sample and 0.75±0.05 N/mm for that after 2.5-days of soaking inside the liquid nitrogen were observed,while the regular standards commonly require 0.4 N/mm^0.6 N/mm for electronic substrates. 展开更多
关键词 WIMPS detector CDEX surface modification ELECTRONIC SUBSTRATE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部