For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t...For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.展开更多
Mg–8Li–3Al–0.7Si alloy was prepared by casting and deformed by hot extrusion in this study.And the microstructure of as-cast and extruded specimens was analyzed with OM,XRD,SEM and EDS.Results show that the specime...Mg–8Li–3Al–0.7Si alloy was prepared by casting and deformed by hot extrusion in this study.And the microstructure of as-cast and extruded specimens was analyzed with OM,XRD,SEM and EDS.Results show that the specimens are composed ofα-Mg,β-Li,AlLi,MgLiAl2 and Mg2Si phases.In as-extruded specimen,the microstructure is refined and theβ-Li phase has the effect of coordination during deformation.After hot extrusion,Chinese script Mg2Si phase is crushed into block-like and distributes uniformly in the matrix.Mechanical properties results show that the strength and elongation are both improved after hot extrusion.展开更多
文摘For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
基金Project(51601024)supported by the National Natural Science Foundation,ChinaProjects(2016YFB0700403,2016YFB0301100)supported by the National Key Research and Development Program of China+1 种基金Project(cstc2016jcyj A0418)supported by the Chongqing Research Program of Basic Research and Frontier Technology,ChinaProject(106112016CDJXZ138811)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg–8Li–3Al–0.7Si alloy was prepared by casting and deformed by hot extrusion in this study.And the microstructure of as-cast and extruded specimens was analyzed with OM,XRD,SEM and EDS.Results show that the specimens are composed ofα-Mg,β-Li,AlLi,MgLiAl2 and Mg2Si phases.In as-extruded specimen,the microstructure is refined and theβ-Li phase has the effect of coordination during deformation.After hot extrusion,Chinese script Mg2Si phase is crushed into block-like and distributes uniformly in the matrix.Mechanical properties results show that the strength and elongation are both improved after hot extrusion.