期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-Precision Fish Pose Estimation Method Based on Improved HRNet
1
作者 peng qiujun LI Weiran +1 位作者 LIU Yeqiang LI Zhenbo 《智慧农业(中英文)》 2025年第3期160-172,共13页
[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or def... [Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition. 展开更多
关键词 AQUACULTURE computer vision fish pose estimation key point attention mechanism
在线阅读 下载PDF
基于人工智能的鱼类行为识别研究综述 被引量:8
2
作者 彭秋珺 李蔚然 李振波 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S01期283-295,共13页
鱼类行为识别对于生态学、水产养殖、渔业资源管理等方面具有重要意义,可以通过其行为模式判断其生长发育状况和活动水平,并间接评估环境因素对其影响,以减少鱼类生长应激反应,提高资源利用效率,为水产养殖的智能化发展奠定基础。近年来... 鱼类行为识别对于生态学、水产养殖、渔业资源管理等方面具有重要意义,可以通过其行为模式判断其生长发育状况和活动水平,并间接评估环境因素对其影响,以减少鱼类生长应激反应,提高资源利用效率,为水产养殖的智能化发展奠定基础。近年来,基于人工智能技术的鱼类行为识别方法受到广泛关注,其具有无损性、低成本等优势。本文综述了近5年基于卷积神经网络、循环神经网络、双流卷积神经网络等人工智能方法的鱼类行为识别技术,对鱼类行为识别方法及数据集进行了归纳与分析,在此基础上,对未来的研究进行讨论与展望。 展开更多
关键词 鱼类行为识别 人工智能 数据集 水产养殖
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部