The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.Ho...The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.展开更多
The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers...The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C.展开更多
As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant...As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective.展开更多
The solid polymer electrolyte(SPE) is one of the most promising candidates for building solid lithium batteries with high energy density and safety due to its advantages of flexibility and light-weight.However,the con...The solid polymer electrolyte(SPE) is one of the most promising candidates for building solid lithium batteries with high energy density and safety due to its advantages of flexibility and light-weight.However,the conventional monolayered electrolytes usually exhibit unstable contacts with either high-voltage cathodes or Li-metal anodes during cell operation.Herein,heterogeneous dual-layered electrolyte membranes(HDEMs) consisting of the specific functional polymer matrixes united with the designed solid ceramic fillers are constructed to address the crucial issues of interfacial instability.The electrolyte layers composed of the high-conductivity and oxidation-resistance polyacrylonitrile(PAN) combined with Li_(0.33)La_(0.557)TiO_(3) nanofibers are in contact with the high-voltage cathodes,achieving the compatible interface between the cathodes and the electrolytes.Meanwhile,the electrolyte layers composed of the highstability and dendrite-resistance polyethylene oxide(PEO) with Li_(6.4)La_(3) Zr_(1.4)Ta_(0.6)O_(12) nanoparticles are in contact with the Li-metal anodes,aiming to suppress the dendrite growth,as well as avoid the passivation between the PAN and the Li-metal.Consequently,the solid LiNi_(0.6)Co_(0.2)Mn_(0.2)O2‖Li full cells based on the designed HDEMs show the good rate and cycling performance,i.e.the discharge capacity of 170.1 mAh g^(-1) with a capacity retention of 78.2% after 100 cycles at 0.1 C and 30℃.The results provide an effective strategy to construct the heterogeneous electrolyte membranes with double-side stable electrode/-electrolyte interfaces for the high-voltage and dendrite-free solid lithium batteries.展开更多
Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In th...Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In the alloy and IMCs,the presence of Ga reduced the surface Ni atom density,and the charge transfer from Ga to Ni increased the electron density of Ni.In the deoxygenation of methyl laurate,the Ni catalyst gave a complete hydrogenolysis of methyl laurate to CH4at 330°C and 3.0 MPa,while the presence of Ga promoted the HDO pathway and suppressed C–C bond hydrogenolysis and methanation.The Ni5Ga3 catalyst exhibited the best desired performance.Even at 400°C,it gave the yield of C11 and C12 hydrocarbons of ~99%,and the selectivity to CH4(SCH4) was only 2.4%.In the deoxygenation of methyl octanoate and methyl palmitate,the Ni5Ga3 catalyst also gave the yield of hydrocarbons above95%.Reactivity evaluation and methyl propionate-TPD and TPSR results indicate that the C–OCH3 bond instead of the O–CH3 one was cleaved on both Ni and bimetallic Ni–Ga catalysts.It is highlighted that methanol,derived from the C–OCH3 bond hydrogenolysis,mainly decomposed to CO and H2 on IMCs,while it was converted to methane on metallic Ni and alloy.It is of great significance that H2 could be yielded from the methyl ester itself.In short,the utilization of Ni–Ga IMCs can effectively reduce carbon loss and H2 consumption,all of which are ascribed to the geometric and electronic effects of Ga.展开更多
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c...The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.展开更多
基金support from the National Natural Science Foundation of China(No.52201278,No.21975260,No.22379103,No.22409074).
文摘The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.
基金supported by the National Key R&D Program of China (Grant No.2023YFB2503900)the National Natural Science Foundation of China (Grant No.52372203)Youth Innovation Team of Universities in Shandong Province (Grant No.2023KJ359)。
文摘The pursuit of high-energy cathode materials has been focused on raising the charging cutoff voltage of nickel (Ni)-rich layered oxide cathode such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O2 (NCM811). However, the NCM811 suffers from rapid capacity fading upon cycling at cutoff voltage higher than 4.5 V, owing to their structural degradation and labile surface reactivity. Surface-coating with solid electrolytes has been recognized as an effective method to mitigate the performance failure of NCM811 at high voltage. Herein, the nano-sized Li_(6.4)La_(3)Ta_(0.6)Zr_(1.4)O_(12) (LLZTO) is uniformly coated on the surface of single-crystal NCM811 particles, accompanied with the long-range Ta^(5+) diffusion into the transition metal layer of NCM811 lattice. It is revealed that the LLZTO coating can not only inhibit the surface reactions of NCM811 with liquid electrolytes but also play an important role in suppressing the bulk microcracking within the NCM811 particles. The incorporation of Ta^(5+) ion expands the lattice spacing and thereby improves the homogeneity of the Li^(+) diffusion in the single-crystal NCM811, which alleviates the mechanical strain and intragranular cracks caused by nonuniform phases-transformation at high charging voltage. The synergy of surface protection and structural stabilization realized by LLZTO coating enables the NCM811-based lithium batteries to achieve a remarkable electrochemical performance. Typically, LLZTO coated NCM811 delivers a high reversible specific capacity of 202.1 mAh⋅g^(−1) with an excellent capacity retention as high as 70% over 1000 cycles upon charging to 4.5 V at 1 C.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2020ME089)the National Natural Science Foundation of China(Grant No.51504275 and 5207433)for their financial supports
文摘As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective.
基金supported by the National Key R&D Program of China (Grant No. 2018YFB0104300)the National Natural Science Foundation of China (Grant No. U1932205, 51771222, 22005163 and 52002197)the ‘‘Taishan Scholars Program”, and the Project of Qingdao Leading Talents in Entrepreneurship and Innovation。
文摘The solid polymer electrolyte(SPE) is one of the most promising candidates for building solid lithium batteries with high energy density and safety due to its advantages of flexibility and light-weight.However,the conventional monolayered electrolytes usually exhibit unstable contacts with either high-voltage cathodes or Li-metal anodes during cell operation.Herein,heterogeneous dual-layered electrolyte membranes(HDEMs) consisting of the specific functional polymer matrixes united with the designed solid ceramic fillers are constructed to address the crucial issues of interfacial instability.The electrolyte layers composed of the high-conductivity and oxidation-resistance polyacrylonitrile(PAN) combined with Li_(0.33)La_(0.557)TiO_(3) nanofibers are in contact with the high-voltage cathodes,achieving the compatible interface between the cathodes and the electrolytes.Meanwhile,the electrolyte layers composed of the highstability and dendrite-resistance polyethylene oxide(PEO) with Li_(6.4)La_(3) Zr_(1.4)Ta_(0.6)O_(12) nanoparticles are in contact with the Li-metal anodes,aiming to suppress the dendrite growth,as well as avoid the passivation between the PAN and the Li-metal.Consequently,the solid LiNi_(0.6)Co_(0.2)Mn_(0.2)O2‖Li full cells based on the designed HDEMs show the good rate and cycling performance,i.e.the discharge capacity of 170.1 mAh g^(-1) with a capacity retention of 78.2% after 100 cycles at 0.1 C and 30℃.The results provide an effective strategy to construct the heterogeneous electrolyte membranes with double-side stable electrode/-electrolyte interfaces for the high-voltage and dendrite-free solid lithium batteries.
基金support from the National Natural Science Foundation of China(Nos.21576193 and 21176177)。
文摘Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In the alloy and IMCs,the presence of Ga reduced the surface Ni atom density,and the charge transfer from Ga to Ni increased the electron density of Ni.In the deoxygenation of methyl laurate,the Ni catalyst gave a complete hydrogenolysis of methyl laurate to CH4at 330°C and 3.0 MPa,while the presence of Ga promoted the HDO pathway and suppressed C–C bond hydrogenolysis and methanation.The Ni5Ga3 catalyst exhibited the best desired performance.Even at 400°C,it gave the yield of C11 and C12 hydrocarbons of ~99%,and the selectivity to CH4(SCH4) was only 2.4%.In the deoxygenation of methyl octanoate and methyl palmitate,the Ni5Ga3 catalyst also gave the yield of hydrocarbons above95%.Reactivity evaluation and methyl propionate-TPD and TPSR results indicate that the C–OCH3 bond instead of the O–CH3 one was cleaved on both Ni and bimetallic Ni–Ga catalysts.It is highlighted that methanol,derived from the C–OCH3 bond hydrogenolysis,mainly decomposed to CO and H2 on IMCs,while it was converted to methane on metallic Ni and alloy.It is of great significance that H2 could be yielded from the methyl ester itself.In short,the utilization of Ni–Ga IMCs can effectively reduce carbon loss and H2 consumption,all of which are ascribed to the geometric and electronic effects of Ga.
基金supported by the National Natural Science Foundation of China(Nos.22208221,22178221)the Natural Science Foundation of Guangdong Province(Nos.2024A1515011078,2024A1515011507)+1 种基金the Shenzhen Science and Technology Program(Nos.JCYJ20220818095805012,JCYJ20230808105109019)the Start-up Research Funding of Shenzhen University(No.868-000001032522).
文摘The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.