我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了...我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了水锁效应。为分析水力化技术造成水锁效应的内在机理,利用压汞实验分析了煤样孔容分布规律,以及利用扫描电镜分析了原始、饱水、饱CMC溶液煤样的微观结构,基于低场核磁共振技术研究了煤样在饱水状态以及饱CMC溶液状态下的液相滞留效应,并根据曲线相似度法分析了孔径与束缚流体饱和度的相似度。研究结果表明:CMC溶液可以溶解煤中的矿物质增加煤孔隙裂隙以及降低水在煤体表面的表面张力,从而达到解除水锁效应的目的;随着煤变质程度的增大,T 2截止值在逐渐减小,T 2截止值的数值与煤样孔径大小呈负相关;煤样的束缚流体饱和度远大于自由流体饱和度,煤样在饱水状态下的束缚流体饱和度比饱CMC溶液状态下高;高变质程度的煤大孔孔容少、微孔孔容多,使得水在煤孔隙中的毛细管力大,最终造成高阶煤的水锁效应严重;大孔孔容是影响束缚流体饱和度的主控因素,微孔起到正向促进作用,得到束缚流体饱和度S与大孔孔容V A、微孔孔容V D的耦合关系式:S=94.86-1078.96 V A+261.24 V D。滞留在煤体内的束缚水阻塞了瓦斯流动通道,是造成水锁效应的根本原因,增加煤层的孔隙裂隙以及选用合适的表面活性是减缓煤层水锁效应的有效措施。展开更多
Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial load...Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial loading was developed.Based on the monitor methods of pressure sensor and acoustic emission,the trials of two patterns of pulse hydraulic fracturing of single frequency and variable frequency were carried out,and at last fracturing mechanism was analyzed.The results show that the effect of variable frequency on fracture extension is better than that of single frequency based on the analysis of macroscopic figures and AE.And the shortage of single frequency is somewhat remedied when the frequency is variable.Under variable frequency,the pressure process can be divided into three stages:low frequency band,pressure stability band and high frequency band,and rupture pressure of the sample is smaller than that of the condition of single frequency.Based on the Miner fatigue theory,the effect of different loading sequences on sample rupture is discussed and the results show that it is better to select the sequence of low frequency at first and then high frequency.Our achievements can give a basis for the improvement and optimization of the pulse hydraulic fracturing technology.展开更多
Aiming at actual condition of poor effect of hole sealing for the reason of poor cement paste fluidity in the process of coal mine gas drainage,by adding a water reducing agent,cement paste for hole sealing was produc...Aiming at actual condition of poor effect of hole sealing for the reason of poor cement paste fluidity in the process of coal mine gas drainage,by adding a water reducing agent,cement paste for hole sealing was produced.The changes of initial distribution,weighted average values and total relaxation signal intensity of transverse relaxation time(T 2) of water in pure cement paste and water reducing agent added cement paste were studied with low field proton nuclear magnetic resonance(NMR).The results show that there are four peaks in T2 distribution curves of cement paste:the first peak is related to the bound water in flocculation,the second and the third peaks are related to the water in flocculation,water reducing agent makes it extending towards the long relaxation time,increasing its liquidity,and the fourth peak is related to the free water.By using weighted average values of T2 and total relaxation signal intensity,hydration process of cement pastes could be roughly divided into four stages:the initial period,reaction period,accelerated period and steady period.By analyzing the periods,it makes sure that the grouting process should be completed in the reaction period in the site,and the drainage process should be started in the steady period.The results have great guiding significance to the hole sealing and methane drainage.展开更多
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat...The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.展开更多
In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and h...In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth- ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after P! are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param- eters, and it makes the mass transfer Biot number B'_i decrease and the mass transfer Fourier series F'_0 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI.展开更多
文摘我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了水锁效应。为分析水力化技术造成水锁效应的内在机理,利用压汞实验分析了煤样孔容分布规律,以及利用扫描电镜分析了原始、饱水、饱CMC溶液煤样的微观结构,基于低场核磁共振技术研究了煤样在饱水状态以及饱CMC溶液状态下的液相滞留效应,并根据曲线相似度法分析了孔径与束缚流体饱和度的相似度。研究结果表明:CMC溶液可以溶解煤中的矿物质增加煤孔隙裂隙以及降低水在煤体表面的表面张力,从而达到解除水锁效应的目的;随着煤变质程度的增大,T 2截止值在逐渐减小,T 2截止值的数值与煤样孔径大小呈负相关;煤样的束缚流体饱和度远大于自由流体饱和度,煤样在饱水状态下的束缚流体饱和度比饱CMC溶液状态下高;高变质程度的煤大孔孔容少、微孔孔容多,使得水在煤孔隙中的毛细管力大,最终造成高阶煤的水锁效应严重;大孔孔容是影响束缚流体饱和度的主控因素,微孔起到正向促进作用,得到束缚流体饱和度S与大孔孔容V A、微孔孔容V D的耦合关系式:S=94.86-1078.96 V A+261.24 V D。滞留在煤体内的束缚水阻塞了瓦斯流动通道,是造成水锁效应的根本原因,增加煤层的孔隙裂隙以及选用合适的表面活性是减缓煤层水锁效应的有效措施。
基金Financial support for this work,provided by the National Basic Research Program of China(No.2011CB201205)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-120959)the"Qing-Lan Project"and Collegial Graduate Research and Innovation Program of Jiangsu Province(No.CXZZ13_0955)
文摘Variable frequency,a new pattern of pulse hydraulic fracturing,is presented for improving permeability in coal seam.A variable frequency pulse hydraulic fracturing testing system was built,the mould with triaxial loading was developed.Based on the monitor methods of pressure sensor and acoustic emission,the trials of two patterns of pulse hydraulic fracturing of single frequency and variable frequency were carried out,and at last fracturing mechanism was analyzed.The results show that the effect of variable frequency on fracture extension is better than that of single frequency based on the analysis of macroscopic figures and AE.And the shortage of single frequency is somewhat remedied when the frequency is variable.Under variable frequency,the pressure process can be divided into three stages:low frequency band,pressure stability band and high frequency band,and rupture pressure of the sample is smaller than that of the condition of single frequency.Based on the Miner fatigue theory,the effect of different loading sequences on sample rupture is discussed and the results show that it is better to select the sequence of low frequency at first and then high frequency.Our achievements can give a basis for the improvement and optimization of the pulse hydraulic fracturing technology.
基金provided by the National Natural Science Foundation of China(Nos.50804048 and 51274195)the Natural Science Foundation of Jiangsu Province(No.BK2012571)the State Key Basic Research Program of China(No.2011CB201205)
文摘Aiming at actual condition of poor effect of hole sealing for the reason of poor cement paste fluidity in the process of coal mine gas drainage,by adding a water reducing agent,cement paste for hole sealing was produced.The changes of initial distribution,weighted average values and total relaxation signal intensity of transverse relaxation time(T 2) of water in pure cement paste and water reducing agent added cement paste were studied with low field proton nuclear magnetic resonance(NMR).The results show that there are four peaks in T2 distribution curves of cement paste:the first peak is related to the bound water in flocculation,the second and the third peaks are related to the water in flocculation,water reducing agent makes it extending towards the long relaxation time,increasing its liquidity,and the fourth peak is related to the free water.By using weighted average values of T2 and total relaxation signal intensity,hydration process of cement pastes could be roughly divided into four stages:the initial period,reaction period,accelerated period and steady period.By analyzing the periods,it makes sure that the grouting process should be completed in the reaction period in the site,and the drainage process should be started in the steady period.The results have great guiding significance to the hole sealing and methane drainage.
基金fnancially supported by the National Natural Science Foundation of China(No.51274195)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+3 种基金the Program for New Century Excellent Talents in University(No.NCET-12-0959)the China Postdoctoral Science Foundation(No.20090450930)the National Basic Research Program of China(No.2011CB201205)Qing Lan Project,and the Youth Foundation of China University of Mining and Technology(No.2007A003)
文摘The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.
基金financially supported by the National Basic Research Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51274195)+2 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2012571)the National Major Scientific Instrument and Equipment Development Project of China (No. 2013YQ17046309)the Education Department Science and Technology Key Project of Henan Province of China (14B440007)
文摘In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth- ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after P! are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param- eters, and it makes the mass transfer Biot number B'_i decrease and the mass transfer Fourier series F'_0 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI.