Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Coope...Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions.The proximity effects between transition metal nitrides(TMNs)are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces.We fabricated heterostructures comprising SC titanium nitride(TiN)and FM iron nitride(Fe_(3)N)with precise chemical compositions and atomically well-defined interfaces.The magnetoresistance of Fe_(3)N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations.Moreover,the superconducting transition temperatureT_(C) and critical field of TiN experience notable suppression when proximity to Fe_(3)N.We observe the intriguing competition of interfacial spin orientations near𝑇T_(C)(∼1.25 K).These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets,but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.展开更多
针对飞鸟和旋翼无人机目标识别的迫切需求,开展微多普勒测量实验研究.首先对飞鸟翅膀扑翼运动、无人机目标主体运动和旋翼转动进行建模分析与参数化表征,从雷达动目标回波中提取多普勒频移信息;然后利用短时傅里叶变换转换为时频图,对...针对飞鸟和旋翼无人机目标识别的迫切需求,开展微多普勒测量实验研究.首先对飞鸟翅膀扑翼运动、无人机目标主体运动和旋翼转动进行建模分析与参数化表征,从雷达动目标回波中提取多普勒频移信息;然后利用短时傅里叶变换转换为时频图,对目标微多普勒特征进行精细化描述,并从雷达参数、目标类型、观测条件等多个角度重点分析了微动特征的影响因素;最后利用K波段线性调频连续波雷达开展飞鸟和两款典型旋翼无人机("御MAVIC Air 2"和"悟Inspire 2")微动测量实验,对微动参数进行估计,验证了理论模型的正确性.实测数据分析表明:目标旋翼叶片长度越大、转速越高,微多普勒频率越大;叶片数目增多导致微动特征重叠;雷达观测角度、调制周期以及时频分析的时间窗长均会对微动特性产生重要影响.展开更多
High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are l...High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.展开更多
Background Hyperprolactinemia is a common adverse reaction in patients with schizophrenia who take antipsychotic drugs;it often leads to treatment noncompliance in patients and has an adverse effect on their prognosis...Background Hyperprolactinemia is a common adverse reaction in patients with schizophrenia who take antipsychotic drugs;it often leads to treatment noncompliance in patients and has an adverse effect on their prognosis.Aims This study aimed to explore the risk factors of elevated prolactin(PRL)caused by risperidone(RIS)and olanzapine(OLZ)and the relationship between PRL and fasting plasma glucose and lipids.Methods Patients with schizophrenia were divided into two groups:264 patients who were taking RIS and 175 patients who were taking OLZ.These two groups were further divided according to serum PRL levels:an elevated PRL group(>30ng/mL)and a normal PRL group(PRL<30ng/mL).The demographics,medication dosage,fasting plasma glucose,total cholesterol and triglycerides were compared in the two groups.Logistic regression analysis was performed to explore the risk factors of elevated PRL levels.Results Compared with the OLZ group,the RIS group had a greater number of patients with elevated PRL(155/264 vs 58/175).Either the RIS or the OLZ group,the proportion of elevated PRL was greater in female patients(RIS:x^2=6.76,p=0.009;OLZ:x^2=12.98,p<0.001)and with higher doses of the related drugs(RIS:U=-3.73,p<0.001;OLZ:U=-2.31,p=0.021).In patients taking RIS,the elevated PRL subgroup took the drug for a longer period(U=-2.76,p=0.006)and had lower triglyceride levels(U=2.76,p=0.006).In patients taking OLZ,the elevated PRL subgroup had lower fasting plasma glucose levels(U=2.29,p=0.022).Logistic regression analysis showed that gender,dose and fasting glucose levels were significantly associated with elevated PRL levels(RIS:p=0.001,OLZ:p<0.001;RIS:p<0.001;OLZ:p=0.003;RIS:p=0.020,OLZ:p=0.001,respectively).Conclusion Compared with OLZ,RIS had a greater effect on PRL in patients with schizophrenia,and in patients with schizophrenia taking RIS or OLZ,gender and dose were significantly correlated with the PRL value.Moreover,the plasma glucose level of the group with elevated PRL was lower than that of the group with normal PRL.The results also showed that high serum PRL may be associated with a favourable glucose metabolic profile in patients with schizophrenia taking RIS or OLZ.Further studies are warranted to confirm this association.展开更多
Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, w...Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.展开更多
6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT netw...6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT networks face two critical challenges,i.e.,energy limitation and severe signal attenuation.Simultaneous wireless information and power transfer(SWIPT)and cooperative relaying provide effective ways to address these two challenges.In this paper,we investigate the energy self-sustainability(ESS)of 6G IoT network and propose an OFDM based bidirectional multi-relay SWIPT strategy for 6G IoT networks.In the proposed strategy,the transmission process is equally divided into two phases.Specifically,in phase1 two source nodes transmit their signals to relay nodes which will then use different subcarrier sets to decode information and harvest energy,respectively.In phase2 relay nodes forward signals to corresponding destination nodes with the harvested energy.We maximize the weighted sum transmission rate by optimizing subcarriers and power allocation.Our proposed strategy achieves larger weighted sum transmission rate comparing with the benchmark scheme.展开更多
Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission v...Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application.Here,we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously.The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability.In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels,we put forward the second scheme,which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers.In particular,its success probability can reach 100%in principle,and independent of the entanglement degree of the shared non-maximally entangled channel.Notably,in the second scheme,the auxiliary particle is not required.展开更多
Packed-bed reactors(PBRs)hold great promise for environmental applications,but a deeper understanding of the behavior of plasma discharge within PBRs is required.To this end,a partial-discharge alternative equivalent ...Packed-bed reactors(PBRs)hold great promise for environmental applications,but a deeper understanding of the behavior of plasma discharge within PBRs is required.To this end,a partial-discharge alternative equivalent circuit for PBRs was established in this work.Dielectric particles(glass beads or glass sand)were used to place focus on the effects of the particle size and shape on the partial discharge behavior of the oxygen PBRs.Some electrical characterizations were explored(e.g.the effective dielectric capacitance,partial discharge coefficient,and corrected burning voltage)that may differ from long-standing interpretations.The findings indicate that the suppressive effect of surface discharge on filament discharge is stronger with the decrease of the particle size.For partial discharge,the effective dielectric capacitance is always less than the dielectric capacitance.The corrected burning voltage and partial discharge tendency increase with the decrease of the particle size.As compared to an empty reactor,the average electric field in the PBR was found to be improved by 3–4 times,and the ozone energy efficiency and production were promoted by more than 20%and 15%,respectively.The plasma processing capacity can therefore be improved by choosing a relatively large size or a complex,irregularly-shaped packing material that is suitable for the discharge gap.展开更多
An experimental system of diesel particulate filter(DPF)regeneration using non-thermal plasma(NTP)technology assisted by exhaust waste heat was conducted and regeneration experiments of DPFs with different amounts of ...An experimental system of diesel particulate filter(DPF)regeneration using non-thermal plasma(NTP)technology assisted by exhaust waste heat was conducted and regeneration experiments of DPFs with different amounts of trapped particulate matter(PM)were conducted.The concentrations of the PM decomposition products(CO,)and the internal temperature of the DPF were monitored to determine the performance of DPF regeneration and thermal safety of the NTP technology.The results showed that the concentrations of CO and CO2and the mass of P.V1 decomposition increased with the increase in the amount of captured PM,whereas the concentration of the NTP active substance(O,)escaping from the DPF decreased under the same working conditions of the NTP injection system.A higher amount of captured PM promoted the oxidative decomposition reaction between NTP and PM and improved the utilization rate of the NTP active substances.The peak temperature at the same measuring point inside the DPF generally increased and the phases of the peak temperature were delayed as the amount of captured PM increased.The temperature peaks and temperature gradients during the DPF regeneration process were far lower than llie failure limit value,which indicates that NTP regeneration technology has good thermal durability and increases the service life of the DPF.展开更多
The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of ...The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of magnetization along the a axis.The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis.The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero.By scaling susceptibilities,we presume this point(B=3.2 T,T=0 K)might be a fieldinduced quantum critical point and the magnetic critical fluctuations can even be felt above TN.展开更多
Quantum sensing has been receiving researcher's attention these years due to its ultrahigh sensitivity and precision. However, the bandwidth of the sensors may be low, thus limiting the scope of their practical ap...Quantum sensing has been receiving researcher's attention these years due to its ultrahigh sensitivity and precision. However, the bandwidth of the sensors may be low, thus limiting the scope of their practical applications. The low-bandwidth problem is conquered by feedback control methods, which are widely utilized in classic control fields. Based on a quantum harmonic oscillator model operating near the resonant point, the bandwidth and sensitivity of the quantum sensor are analyzed. The results give two important conclusions: (a) the bandwidth and sensitivity are two incompatible performance parameters of the sensor, so there must be a trade-off between bandwidth and sensitivity in practical applications;(b) the quantum white noise affects the signal to be detected in a non-white form due to the feedback control.展开更多
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
基金supported by the National Key Research and Development Program of China(Grant Nos.2020YFA0309100 and 2019YFA0308500)the National Natural Science Foundation of China(Grant Nos.U22A20263,52250308,and 11974390)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)(E.J.G.)Special Research Assistant(Q.J.),the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33030200)(K.J.)the China Postdoctoral Science Foundation(Grant No.2022M723353)the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology(Grant No.HTCSNS-DG-CD-0080/2021).
文摘Proximity effects between superconductors and ferromagnets(SC/FM)hold paramount importance in comprehending the spin competition transpiring at their interfaces.This competition arises from the interplay between Cooper pairs and ferromagnetic exchange interactions.The proximity effects between transition metal nitrides(TMNs)are scarcely investigated due to the formidable challenges of fabricating high-quality SC/FM interfaces.We fabricated heterostructures comprising SC titanium nitride(TiN)and FM iron nitride(Fe_(3)N)with precise chemical compositions and atomically well-defined interfaces.The magnetoresistance of Fe_(3)N/TiN heterostructures shows a distinct magnetic anisotropy and strongly depends on the external perturbations.Moreover,the superconducting transition temperatureT_(C) and critical field of TiN experience notable suppression when proximity to Fe_(3)N.We observe the intriguing competition of interfacial spin orientations near𝑇T_(C)(∼1.25 K).These findings not only add a new materials system for investigating the interplay between superconductor and ferromagnets,but also potentially provide a building block for future research endeavors and applications in the realms of superconducting spintronic devices.
文摘针对飞鸟和旋翼无人机目标识别的迫切需求,开展微多普勒测量实验研究.首先对飞鸟翅膀扑翼运动、无人机目标主体运动和旋翼转动进行建模分析与参数化表征,从雷达动目标回波中提取多普勒频移信息;然后利用短时傅里叶变换转换为时频图,对目标微多普勒特征进行精细化描述,并从雷达参数、目标类型、观测条件等多个角度重点分析了微动特征的影响因素;最后利用K波段线性调频连续波雷达开展飞鸟和两款典型旋翼无人机("御MAVIC Air 2"和"悟Inspire 2")微动测量实验,对微动参数进行估计,验证了理论模型的正确性.实测数据分析表明:目标旋翼叶片长度越大、转速越高,微多普勒频率越大;叶片数目增多导致微动特征重叠;雷达观测角度、调制周期以及时频分析的时间窗长均会对微动特性产生重要影响.
文摘High spectrum efficiency(SE)requirement and massive connections are the main challenges for the fifth generation(5G)and beyond 5G(B5G)wireless networks,especially for the case when Internet of Things(IoT)devices are located in a disaster area.Non-orthogonal multiple access(NOMA)-based unmanned aerial vehicle(UAV)-aided network is emerging as a promising technique to overcome the above challenges.In this paper,an emergency communications framework of NOMA-based UAV-aided networks is established,where the disasters scenarios can be divided into three broad categories that have named emergency areas,wide areas and dense areas.First,a UAV-enabled uplink NOMA system is established to gather information from IoT devices in emergency areas.Then,a joint UAV deployment and resource allocation scheme for a multi-UAV enabled NOMA system is developed to extend the UAV coverage for IoT devices in wide areas.Furthermore,a UAV equipped with an antenna array has been considered to provide wireless service for multiple devices that are densely distributed in disaster areas.Simulation results are provided to validate the effectiveness of the above three schemes.Finally,potential research directions and challenges are also highlighted and discussed.
基金This study was supported from the Shanghai clinical research center for mental health(19MC1911100)the Clinical tech-platform for evaluation of new drug in Psychiatry(CPEP)(2018ZX09734-005)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA12040105)the Clinical Research Center,Shanghai Jiao Tong University School of Medicine(DLY201620)the Analysis on the change of prolactin in antipsychotics and its related factors(CRC2018DSJ01-2)。
文摘Background Hyperprolactinemia is a common adverse reaction in patients with schizophrenia who take antipsychotic drugs;it often leads to treatment noncompliance in patients and has an adverse effect on their prognosis.Aims This study aimed to explore the risk factors of elevated prolactin(PRL)caused by risperidone(RIS)and olanzapine(OLZ)and the relationship between PRL and fasting plasma glucose and lipids.Methods Patients with schizophrenia were divided into two groups:264 patients who were taking RIS and 175 patients who were taking OLZ.These two groups were further divided according to serum PRL levels:an elevated PRL group(>30ng/mL)and a normal PRL group(PRL<30ng/mL).The demographics,medication dosage,fasting plasma glucose,total cholesterol and triglycerides were compared in the two groups.Logistic regression analysis was performed to explore the risk factors of elevated PRL levels.Results Compared with the OLZ group,the RIS group had a greater number of patients with elevated PRL(155/264 vs 58/175).Either the RIS or the OLZ group,the proportion of elevated PRL was greater in female patients(RIS:x^2=6.76,p=0.009;OLZ:x^2=12.98,p<0.001)and with higher doses of the related drugs(RIS:U=-3.73,p<0.001;OLZ:U=-2.31,p=0.021).In patients taking RIS,the elevated PRL subgroup took the drug for a longer period(U=-2.76,p=0.006)and had lower triglyceride levels(U=2.76,p=0.006).In patients taking OLZ,the elevated PRL subgroup had lower fasting plasma glucose levels(U=2.29,p=0.022).Logistic regression analysis showed that gender,dose and fasting glucose levels were significantly associated with elevated PRL levels(RIS:p=0.001,OLZ:p<0.001;RIS:p<0.001;OLZ:p=0.003;RIS:p=0.020,OLZ:p=0.001,respectively).Conclusion Compared with OLZ,RIS had a greater effect on PRL in patients with schizophrenia,and in patients with schizophrenia taking RIS or OLZ,gender and dose were significantly correlated with the PRL value.Moreover,the plasma glucose level of the group with elevated PRL was lower than that of the group with normal PRL.The results also showed that high serum PRL may be associated with a favourable glucose metabolic profile in patients with schizophrenia taking RIS or OLZ.Further studies are warranted to confirm this association.
基金supported by the National Natural Science Foundation of China under Grant 62071364in part by the Aeronautical Science Foundation of China under Grant 2020Z073081001+2 种基金in part by the Fundamental Research Funds for the Central Universities under Grant JB210104in part by the Shaanxi Provincial Key Research and Development Program under Grant 2019GY-043in part by the 111 Project under Grant B08038。
文摘Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.
基金This work was supported by China National Science Foundation under Grant No.61871348by University Key Laboratory of Advanced Wireless Communications of Guangdong Province,by the Project funded by China Postdoctoral Science Foundation under Grant 2019T120531+1 种基金by the Science and Technology Development Fund,Macao,China under Grant 0162/2019/A3by the Fundamental Research Funds for the Provincial Universities of Zhejiang under Grant RFA2019001.
文摘6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT networks face two critical challenges,i.e.,energy limitation and severe signal attenuation.Simultaneous wireless information and power transfer(SWIPT)and cooperative relaying provide effective ways to address these two challenges.In this paper,we investigate the energy self-sustainability(ESS)of 6G IoT network and propose an OFDM based bidirectional multi-relay SWIPT strategy for 6G IoT networks.In the proposed strategy,the transmission process is equally divided into two phases.Specifically,in phase1 two source nodes transmit their signals to relay nodes which will then use different subcarrier sets to decode information and harvest energy,respectively.In phase2 relay nodes forward signals to corresponding destination nodes with the harvested energy.We maximize the weighted sum transmission rate by optimizing subcarriers and power allocation.Our proposed strategy achieves larger weighted sum transmission rate comparing with the benchmark scheme.
基金Project supported by the Key Industry Projects in Shaanxi Province,China(Grant Nos.2019ZDLGY09-03 and 2020ZDLGY15-09)the National Natural Science Foundation of China(Grant Nos.61771296,61372076,and 61301171)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2018JM60-53 and 2018JZ60-06)the 111 Project(Grant B08038).
文摘Due to the unavoidable interaction between the quantum channel and its ambient environment,it is difficult to generate and maintain the maximally entanglement.Thus,the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application.Here,we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously.The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability.In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels,we put forward the second scheme,which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers.In particular,its success probability can reach 100%in principle,and independent of the entanglement degree of the shared non-maximally entangled channel.Notably,in the second scheme,the auxiliary particle is not required.
基金supported by National Natural Science Foundation of China(Nos.51806085,51676089)China Postdoctoral Science Foundation(2018M642175)the Double Innovation Talents of Jiangsu Province and Jiangsu University Youth Talent Cultivation Program Funded Project
文摘Packed-bed reactors(PBRs)hold great promise for environmental applications,but a deeper understanding of the behavior of plasma discharge within PBRs is required.To this end,a partial-discharge alternative equivalent circuit for PBRs was established in this work.Dielectric particles(glass beads or glass sand)were used to place focus on the effects of the particle size and shape on the partial discharge behavior of the oxygen PBRs.Some electrical characterizations were explored(e.g.the effective dielectric capacitance,partial discharge coefficient,and corrected burning voltage)that may differ from long-standing interpretations.The findings indicate that the suppressive effect of surface discharge on filament discharge is stronger with the decrease of the particle size.For partial discharge,the effective dielectric capacitance is always less than the dielectric capacitance.The corrected burning voltage and partial discharge tendency increase with the decrease of the particle size.As compared to an empty reactor,the average electric field in the PBR was found to be improved by 3–4 times,and the ozone energy efficiency and production were promoted by more than 20%and 15%,respectively.The plasma processing capacity can therefore be improved by choosing a relatively large size or a complex,irregularly-shaped packing material that is suitable for the discharge gap.
文摘An experimental system of diesel particulate filter(DPF)regeneration using non-thermal plasma(NTP)technology assisted by exhaust waste heat was conducted and regeneration experiments of DPFs with different amounts of trapped particulate matter(PM)were conducted.The concentrations of the PM decomposition products(CO,)and the internal temperature of the DPF were monitored to determine the performance of DPF regeneration and thermal safety of the NTP technology.The results showed that the concentrations of CO and CO2and the mass of P.V1 decomposition increased with the increase in the amount of captured PM,whereas the concentration of the NTP active substance(O,)escaping from the DPF decreased under the same working conditions of the NTP injection system.A higher amount of captured PM promoted the oxidative decomposition reaction between NTP and PM and improved the utilization rate of the NTP active substances.The peak temperature at the same measuring point inside the DPF generally increased and the phases of the peak temperature were delayed as the amount of captured PM increased.The temperature peaks and temperature gradients during the DPF regeneration process were far lower than llie failure limit value,which indicates that NTP regeneration technology has good thermal durability and increases the service life of the DPF.
基金The work at SUSTech was supported by the National Natural Science Foundation of China(Grant No.11974157)Part of this work was also supported by the National Natural Science Foundation of China(Grant No.11875265)+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He-based neutron polarization devices)the Institute of High Energy Physics,the Chinese Academy of Sciences.Kan X C and Tian M L were supported by the National Natural Science Foundation of China(Grant No.51802002).
文摘The magnetic phase diagram of rare-earth perovskite compound,GdScO3,has been investigated by magnetization and heat capacity.The system undergoes an antiferromagnetic phase transition at TN=2.6 K,with an easy axis of magnetization along the a axis.The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis.The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero.By scaling susceptibilities,we presume this point(B=3.2 T,T=0 K)might be a fieldinduced quantum critical point and the magnetic critical fluctuations can even be felt above TN.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11534002, U1930402, and U1930403).
文摘Quantum sensing has been receiving researcher's attention these years due to its ultrahigh sensitivity and precision. However, the bandwidth of the sensors may be low, thus limiting the scope of their practical applications. The low-bandwidth problem is conquered by feedback control methods, which are widely utilized in classic control fields. Based on a quantum harmonic oscillator model operating near the resonant point, the bandwidth and sensitivity of the quantum sensor are analyzed. The results give two important conclusions: (a) the bandwidth and sensitivity are two incompatible performance parameters of the sensor, so there must be a trade-off between bandwidth and sensitivity in practical applications;(b) the quantum white noise affects the signal to be detected in a non-white form due to the feedback control.