Axial compression experiments on as received aluminum tubes and tubes with wall thickness eccentricity incorporated by off centre machining showed that the eccentricity caused transition of their collapse mode from ax...Axial compression experiments on as received aluminum tubes and tubes with wall thickness eccentricity incorporated by off centre machining showed that the eccentricity caused transition of their collapse mode from axisymmetric to diamond. The numerical simulation of the collapse phenomenon was undertaken using a static non-linear Finite Element Analysis in ANSYS, and results are found to compare well with the experimental load compression and energy absorption responses for axisymmetric concertina and non-axisymmetric diamond modes. Having validated the numerical model with experiments, it has been used to undertake a systematic study of the load - compression characteristics and collapse mode transitions of the tubes with varying eccentricities in wall thickness and boundary conditions, as well as the material properties.展开更多
基金The Author wishes to thank the Dept. Of Science and Technology, India and Natural Science Foundation, China for their support towards his attending the 7th Asia Pacific Symposium on Engg Plasticity and its Application.
文摘Axial compression experiments on as received aluminum tubes and tubes with wall thickness eccentricity incorporated by off centre machining showed that the eccentricity caused transition of their collapse mode from axisymmetric to diamond. The numerical simulation of the collapse phenomenon was undertaken using a static non-linear Finite Element Analysis in ANSYS, and results are found to compare well with the experimental load compression and energy absorption responses for axisymmetric concertina and non-axisymmetric diamond modes. Having validated the numerical model with experiments, it has been used to undertake a systematic study of the load - compression characteristics and collapse mode transitions of the tubes with varying eccentricities in wall thickness and boundary conditions, as well as the material properties.