Lithium/Sodium-ion batteries(LIB/SIB)have attracted enormous attention as a promising electrochemical energy storage system due to their high energy density and long cycle life.One of the major hurdles is the initial ...Lithium/Sodium-ion batteries(LIB/SIB)have attracted enormous attention as a promising electrochemical energy storage system due to their high energy density and long cycle life.One of the major hurdles is the initial irreversible capacity loss during the first few cycles owing to forming the solid electrolyte interphase layer(SEI).This process consumes a profusion of lithium/sodium,which reduces the overall energy density and cycle life.Thus,a suitable approach to compensate for the irreversible capacity loss must be developed to improve the energy density and cycle life.Pre-lithiation/sodiation is a widely accepted process to compensate for the irreversible capacity loss during the initial cycles.Various strategies such as physical,chemical,and electrochemical pre-lithiation/sodiation have been explored;however,these approaches add an extra step to the current manufacturing process.Alternative to these strategies,pre-lithiation/sodiation additives have attracted enormous attention due to their easy adaptability and compatibility with the current battery manufacturing process.In this review,we consolidate recent developments and emphasize the importance of using pre-lithiation/sodiation additives(anode and cathode)to overcome the irreversible capacity loss during the initial cycles in lithium/sodium-ion batteries.This review also addresses the technical and scientific challenges of using pre-lithiation/sodiation additives and offers the insights to boost the energy density and cycle life with their possible commercial exploration.The most important prerequisites for designing effective pre-lithiation/sodiation additives have been explored and the future directions have been discussed.展开更多
Microbial fuel cells(MFCs)are a well-known technology used for bioelectricity production from the decomposition of organic waste via electroactive microbes.Fat,oil,and grease(FOG)as a new substrate in the anode and mi...Microbial fuel cells(MFCs)are a well-known technology used for bioelectricity production from the decomposition of organic waste via electroactive microbes.Fat,oil,and grease(FOG)as a new substrate in the anode and microalgae in the cathode were added to accelerate the electrogenesis.The effect of FOG concentrations(0.1%,0.5%,1%,and 1.5%)on the anode chamber was investigated.The FOG degradation,volatile fatty acid(VFAs)production,and soluble chemical oxygen demand along with voltage output kinetics were analyzed.Moreover,the microbial community analysis and active functional enzymes were also evaluated.The maximum power and current density were observed at 0.5%FOG which accounts for 96 mW m^(-2)(8-folds enhancement)and 560 mA m^(-2)(3.7-folds enhancement),respectively.The daily voltage output enhanced upto 2.3-folds with 77.08%coulombic efficiency under 0.5%FOG,which was the highest among all the reactors.The 0.5%FOG was degraded>85%,followed by a 1%FOG-loaded reactor.The chief enzymes inβ-oxidation and electrogenesis were acetyl-CoA C-acetyltransferase,riboflavin synthase,and riboflavin kinase.The identified enzymes symbolize the presence of Clostridium sp.(>15%)and Pseudomonas(>10%)which served as electrochemical active bacteria(EAB).The major metabolic pathways involved in electrogenesis and FOG degradation were fatty acid biosynthesis and glycerophospholipid metabolism.Utilization of lipidic-waste(such as FOG)in MFCs could be a potential approach for simultaneous biowaste utilization and bioenergy generation.展开更多
基金the support of the Deputyship for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia,for this research through a grant(NU/IFC/INT/01/002)under the Institutional Funding Committee at Najran University,Kingdom of Saudi Arabiathe support from the National Research Foundation of Korea(NRF)funded by the Brain Pool program(2021H1D3A2A02039346)。
文摘Lithium/Sodium-ion batteries(LIB/SIB)have attracted enormous attention as a promising electrochemical energy storage system due to their high energy density and long cycle life.One of the major hurdles is the initial irreversible capacity loss during the first few cycles owing to forming the solid electrolyte interphase layer(SEI).This process consumes a profusion of lithium/sodium,which reduces the overall energy density and cycle life.Thus,a suitable approach to compensate for the irreversible capacity loss must be developed to improve the energy density and cycle life.Pre-lithiation/sodiation is a widely accepted process to compensate for the irreversible capacity loss during the initial cycles.Various strategies such as physical,chemical,and electrochemical pre-lithiation/sodiation have been explored;however,these approaches add an extra step to the current manufacturing process.Alternative to these strategies,pre-lithiation/sodiation additives have attracted enormous attention due to their easy adaptability and compatibility with the current battery manufacturing process.In this review,we consolidate recent developments and emphasize the importance of using pre-lithiation/sodiation additives(anode and cathode)to overcome the irreversible capacity loss during the initial cycles in lithium/sodium-ion batteries.This review also addresses the technical and scientific challenges of using pre-lithiation/sodiation additives and offers the insights to boost the energy density and cycle life with their possible commercial exploration.The most important prerequisites for designing effective pre-lithiation/sodiation additives have been explored and the future directions have been discussed.
基金the Deanship of Scientific Research at Najran University for funding this work,under the Research Groups Funding program grant code(NU/RG/SERC/12/23)。
文摘Microbial fuel cells(MFCs)are a well-known technology used for bioelectricity production from the decomposition of organic waste via electroactive microbes.Fat,oil,and grease(FOG)as a new substrate in the anode and microalgae in the cathode were added to accelerate the electrogenesis.The effect of FOG concentrations(0.1%,0.5%,1%,and 1.5%)on the anode chamber was investigated.The FOG degradation,volatile fatty acid(VFAs)production,and soluble chemical oxygen demand along with voltage output kinetics were analyzed.Moreover,the microbial community analysis and active functional enzymes were also evaluated.The maximum power and current density were observed at 0.5%FOG which accounts for 96 mW m^(-2)(8-folds enhancement)and 560 mA m^(-2)(3.7-folds enhancement),respectively.The daily voltage output enhanced upto 2.3-folds with 77.08%coulombic efficiency under 0.5%FOG,which was the highest among all the reactors.The 0.5%FOG was degraded>85%,followed by a 1%FOG-loaded reactor.The chief enzymes inβ-oxidation and electrogenesis were acetyl-CoA C-acetyltransferase,riboflavin synthase,and riboflavin kinase.The identified enzymes symbolize the presence of Clostridium sp.(>15%)and Pseudomonas(>10%)which served as electrochemical active bacteria(EAB).The major metabolic pathways involved in electrogenesis and FOG degradation were fatty acid biosynthesis and glycerophospholipid metabolism.Utilization of lipidic-waste(such as FOG)in MFCs could be a potential approach for simultaneous biowaste utilization and bioenergy generation.