The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temper...The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.展开更多
The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the s...The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the solid contaminants lead to significant wear in the first few operating cycles, in zones with a high rate of sliding. The scanning electron microscopy(SEM) images show clearly that the wear is more significant for a dry contact in the presence of larger size particles. Indeed, the presence of contaminants leads to an increase in friction, and therefore raises the temperature and the vibration levels when the operation of gear mechanism becomes very severe especially for a dry contact under the effect of larger size particles. On the other hand, we have tried to obtain a better understanding and a good description of wear debris distributions in gear mechanisms by using unimodal, single distribution models(Weibull and three-parameter Weibull).展开更多
文摘The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.
文摘The failure of spur gears operating in highly contaminated media was studied. In fact, the effect of the presence of solid particles in gear mechanisms during surface tooth contact was observed. It is shown that the solid contaminants lead to significant wear in the first few operating cycles, in zones with a high rate of sliding. The scanning electron microscopy(SEM) images show clearly that the wear is more significant for a dry contact in the presence of larger size particles. Indeed, the presence of contaminants leads to an increase in friction, and therefore raises the temperature and the vibration levels when the operation of gear mechanism becomes very severe especially for a dry contact under the effect of larger size particles. On the other hand, we have tried to obtain a better understanding and a good description of wear debris distributions in gear mechanisms by using unimodal, single distribution models(Weibull and three-parameter Weibull).