Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old ma...Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD.展开更多
Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from va...Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the“coffeering”effect.Here,we report a novel approach to print highperformance indium tin oxide(ITO)-based TFTs and logic inverters by taking advantage of such notorious effect.ITO has high electrical conductivity and is generally used as an electrode material.However,by reducing the film thickness down to nanometers scale,the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors.The ultrathin(~10-nm-thick)ITO film in the center of the coffee-ring worked as semiconducting channels,while the thick ITO ridges(>18-nm-thick)served as the contact electrodes.The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V^(−1) s^(−1) and a low subthreshold swing of 105 mV dec^(−1).In addition,the devices exhibited excellent electrical stability under positive bias illumination stress(PBIS,ΔV_(th)=0.31 V)and negative bias illuminaiton stress(NBIS,ΔV_(th)=−0.29 V)after 10,000 s voltage bias tests.More remarkably,fully printed n-type metal–oxide–semiconductor(NMOS)inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V,promising for advanced electronics applications.展开更多
This study endeavors to investigate the effects of Bifidobacterium breve CCFM1078 on bone formation and resorption balance in growing BALB/c mice.Newborn BALB/c mice were assigned to the control group(administration s...This study endeavors to investigate the effects of Bifidobacterium breve CCFM1078 on bone formation and resorption balance in growing BALB/c mice.Newborn BALB/c mice were assigned to the control group(administration saline)and the CCFM1078 group(administration B.breve CCFM1078,3×10^(9) CFU/day)in 3-,4-,and 5-week tests.All the groups have male and female distinctions.Our findings demonstrate that B.breve CCFM1078 exerts on the dynamic equilibrium between bone formation and resorption during the critical period of growth in mice by modulating the composition of gut microbiota and metabolites(hexadecanamide,linoleoyl ethanolamide,and palmitoyl ethanolamide),the genes and proteins expression related to the growth hormone(GH)/insulin-like growth factors-1(IGF-1)axis and Gs/PKA/CREB signaling pathways,as well as downstream osteogenic and osteoclastic differentiation factors.The effects of B.breve CCFM1078 were different with age and gender dependent.This finding suggests B.breve CCFM1078 may have potential applications in regulating bone metabolism in the growth period population.展开更多
Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to ...Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.展开更多
基金supported by the National Natural Science Foundation of China (32021005, 31820103010)111 project (BP0719028)the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD.
基金This research was financially supported under the Westlake Multidisciplinary Research Initiative Center(MRIC)Seed Fund(Grant No.MRIC20200101).
文摘Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the“coffeering”effect.Here,we report a novel approach to print highperformance indium tin oxide(ITO)-based TFTs and logic inverters by taking advantage of such notorious effect.ITO has high electrical conductivity and is generally used as an electrode material.However,by reducing the film thickness down to nanometers scale,the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors.The ultrathin(~10-nm-thick)ITO film in the center of the coffee-ring worked as semiconducting channels,while the thick ITO ridges(>18-nm-thick)served as the contact electrodes.The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V^(−1) s^(−1) and a low subthreshold swing of 105 mV dec^(−1).In addition,the devices exhibited excellent electrical stability under positive bias illumination stress(PBIS,ΔV_(th)=0.31 V)and negative bias illuminaiton stress(NBIS,ΔV_(th)=−0.29 V)after 10,000 s voltage bias tests.More remarkably,fully printed n-type metal–oxide–semiconductor(NMOS)inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V,promising for advanced electronics applications.
基金supported by the National Key R&D Program of China(2021YFD2100700)National Natural Science Foundation of China(32021005)+1 种基金111 project(BP0719028)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘This study endeavors to investigate the effects of Bifidobacterium breve CCFM1078 on bone formation and resorption balance in growing BALB/c mice.Newborn BALB/c mice were assigned to the control group(administration saline)and the CCFM1078 group(administration B.breve CCFM1078,3×10^(9) CFU/day)in 3-,4-,and 5-week tests.All the groups have male and female distinctions.Our findings demonstrate that B.breve CCFM1078 exerts on the dynamic equilibrium between bone formation and resorption during the critical period of growth in mice by modulating the composition of gut microbiota and metabolites(hexadecanamide,linoleoyl ethanolamide,and palmitoyl ethanolamide),the genes and proteins expression related to the growth hormone(GH)/insulin-like growth factors-1(IGF-1)axis and Gs/PKA/CREB signaling pathways,as well as downstream osteogenic and osteoclastic differentiation factors.The effects of B.breve CCFM1078 were different with age and gender dependent.This finding suggests B.breve CCFM1078 may have potential applications in regulating bone metabolism in the growth period population.
基金funded by the National Key R&D Program of China(2021YFD2100700)National Natural Science Foundation of China(32021005)+1 种基金111 project(BP0719028)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.