Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an...Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.展开更多
Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting charac...Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields.展开更多
基金Major Unified Construction Project of Petro China(2019-40210-000020-02)。
文摘Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
基金Supported by the National Science and Technology Major Project(2016ZX05007-004)。
文摘Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields.