This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly...This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.展开更多
Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc....Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc.Motivated by such applications,in this article,a numerical study of entropy generation impacts on the heat and momentum transfer in time-dependent laminar incompressible boundary layer flow of a Casson viscoplastic fluid over a uniformly heated vertical cylinder embedded in a porous medium is presented.Darcy’s law is used to simulate bulk drag effects at low Reynolds number for an isotropic,homogenous porous medium.Heat line visualization is also included.The mathematical model is derived and normalized using appropriate transformation variables.The resulting non-linear time-dependent coupled governing equations with associated boundary conditions are solved via an implicit finite difference method which is efficient and unconditionally stable.The outcomes show that entropy generation and Bejan number are both elevated with increasing values of Darcy number,Casson fluid parameter,group parameter and Grashof number.To analyze the heat transfer process in a two-dimensional domain,plotting heat lines provides an excellent approach in addition to streamlines and isotherms.It is remarked that as the Darcy number increases,the deviations of heat lines from the hot wall are reduced.展开更多
Generation of power through renewable energy resources is variable in nature due to their intermittence and the generation cost from these resources is also high for developing countries.Supportive policies and scheme...Generation of power through renewable energy resources is variable in nature due to their intermittence and the generation cost from these resources is also high for developing countries.Supportive policies and schemes like feed-in tariff and net metering are not so much attractive for consumers due to their insufficient rates and unfavorable institutional design.The shortcomings in these schemes can be avoided through self-consumption technique for roof top solar photovoltaic system,as this technique results in cheaper generation of electricity as compared to that of utility or grid.Therefore,prosumers are more attractive to use most of electrical power at cheapest price.In this paper,the cost and feasibility for the on-grid industrial solar photovoltaic system was analyzed.It is found from the results that store on-grid based photovoltaic system will be 0.0086$/(kW∙h)and utility will sell energy to the prosumers at rate of 0.062$/(kW·h),which will result in 35.23%reduction in annual cost of energy as compared to time of use rating model.Furthermore,96%of annual energy demand can be achieved by the proposed scheme,which guarantees the security of supply and the proposed model can be adopted for developing countries.展开更多
基金DRDO(TBR-1251)for funding and awarding the Project
文摘This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.
基金DST-INSPIRE (Code No. IF160028) for the grant of research fellowship
文摘Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc.Motivated by such applications,in this article,a numerical study of entropy generation impacts on the heat and momentum transfer in time-dependent laminar incompressible boundary layer flow of a Casson viscoplastic fluid over a uniformly heated vertical cylinder embedded in a porous medium is presented.Darcy’s law is used to simulate bulk drag effects at low Reynolds number for an isotropic,homogenous porous medium.Heat line visualization is also included.The mathematical model is derived and normalized using appropriate transformation variables.The resulting non-linear time-dependent coupled governing equations with associated boundary conditions are solved via an implicit finite difference method which is efficient and unconditionally stable.The outcomes show that entropy generation and Bejan number are both elevated with increasing values of Darcy number,Casson fluid parameter,group parameter and Grashof number.To analyze the heat transfer process in a two-dimensional domain,plotting heat lines provides an excellent approach in addition to streamlines and isotherms.It is remarked that as the Darcy number increases,the deviations of heat lines from the hot wall are reduced.
文摘Generation of power through renewable energy resources is variable in nature due to their intermittence and the generation cost from these resources is also high for developing countries.Supportive policies and schemes like feed-in tariff and net metering are not so much attractive for consumers due to their insufficient rates and unfavorable institutional design.The shortcomings in these schemes can be avoided through self-consumption technique for roof top solar photovoltaic system,as this technique results in cheaper generation of electricity as compared to that of utility or grid.Therefore,prosumers are more attractive to use most of electrical power at cheapest price.In this paper,the cost and feasibility for the on-grid industrial solar photovoltaic system was analyzed.It is found from the results that store on-grid based photovoltaic system will be 0.0086$/(kW∙h)and utility will sell energy to the prosumers at rate of 0.062$/(kW·h),which will result in 35.23%reduction in annual cost of energy as compared to time of use rating model.Furthermore,96%of annual energy demand can be achieved by the proposed scheme,which guarantees the security of supply and the proposed model can be adopted for developing countries.