To improve the temperature uniformity of instant rice in a plastic rectangular container, during microwave reheating, the changes of temperature distribution were analyzed by using experiment and simulation method. A ...To improve the temperature uniformity of instant rice in a plastic rectangular container, during microwave reheating, the changes of temperature distribution were analyzed by using experiment and simulation method. A three-dimensional finite element model was established to describe microwave reheating of instant rice to predict the temperature. The results showed that the highest temperature occurred at the corners and bottom layer. The cold spots were located in the sample interior center. The simulation results in the model matched relatively with the experimental results. A method of intermittent microwave reheating was proposed to improve the temperature uniformity of convenient rice, and the optimal combination was the time of microwave reheating was 180 s, and the intermittent ratio was 1 : 3.展开更多
In order to study the microwave-assisted foam-mat drying properties of corn soaking water and optimize process parameters, a quadratic regression orthogonal rotary method was used to analyze the influence of microwave...In order to study the microwave-assisted foam-mat drying properties of corn soaking water and optimize process parameters, a quadratic regression orthogonal rotary method was used to analyze the influence of microwave power, material weight, material thickness and drying time on moisture content(dry basis), color value and protein content. Results showed that the primary and secondary sequence of parameters with regard to moisture content(d. b.) was drying time, microwave power, material weight and material thickness; the primary and secondary sequence of parameters with regard to color value was material weight, drying time, microwave power and material thickness; the primary and secondary sequence of parameters with regard to protein content was drying time, material weight, microwave power and material thickness. Optimum conditions were obtained as microwave power of 560 W, material weight of 46.88 g, material thickness of 6.20 mm and drying time of 8.01 min. The results might provide the theoretical basis and technical support for the microwave-assisted foam-mat drying of corn soaking water to produce yeast protein power.展开更多
基金Supported by the National Natural Science Foundation of China(31571848)the National Public Welfare Industry(Agriculture)Research Project of China(201403063-4)Project of Development and Research of Application Technology of Harbin of China in 2017(2017RAXXJ028)
文摘To improve the temperature uniformity of instant rice in a plastic rectangular container, during microwave reheating, the changes of temperature distribution were analyzed by using experiment and simulation method. A three-dimensional finite element model was established to describe microwave reheating of instant rice to predict the temperature. The results showed that the highest temperature occurred at the corners and bottom layer. The cold spots were located in the sample interior center. The simulation results in the model matched relatively with the experimental results. A method of intermittent microwave reheating was proposed to improve the temperature uniformity of convenient rice, and the optimal combination was the time of microwave reheating was 180 s, and the intermittent ratio was 1 : 3.
文摘In order to study the microwave-assisted foam-mat drying properties of corn soaking water and optimize process parameters, a quadratic regression orthogonal rotary method was used to analyze the influence of microwave power, material weight, material thickness and drying time on moisture content(dry basis), color value and protein content. Results showed that the primary and secondary sequence of parameters with regard to moisture content(d. b.) was drying time, microwave power, material weight and material thickness; the primary and secondary sequence of parameters with regard to color value was material weight, drying time, microwave power and material thickness; the primary and secondary sequence of parameters with regard to protein content was drying time, material weight, microwave power and material thickness. Optimum conditions were obtained as microwave power of 560 W, material weight of 46.88 g, material thickness of 6.20 mm and drying time of 8.01 min. The results might provide the theoretical basis and technical support for the microwave-assisted foam-mat drying of corn soaking water to produce yeast protein power.