Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic par...Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condi-tion.Herein,with the inspiration from dielectric-magnetic synergy,this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method.Ni2+ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption.Benefiting from the possible“seed-germination”effect,the“seeds”Ni^(2+)grow into“buds”Ni nanoparticles and“stem”carbon nanotubes(CNTs)from the enlarged“soil”of MXene skeleton.Due to the improved impedance matching con-dition,the MXene-CNTs/Ni hybrid holds a superior microwave absorp-tion performance of−56.4 dB at only 2.4 mm thickness.Such a distinctive 3D architecture endows the hybrids:(i)a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability,(ii)a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability,confirmed by the off-axis electron holography.These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.展开更多
MXene, as a rising star of two-dimensional(2 D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5 G era. However, challenges arise due...MXene, as a rising star of two-dimensional(2 D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5 G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic selfassembly strategy to fabricate magnetized MXene-r GO/Co Ni film was reported. Inside the synthesized composite film, r GO nanosheets decorated with highly dispersed Co Ni nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic Fe Co alloy nanoparticles on the r GO substrate, the entire MXener GO/Co Ni film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous heterointerfaces between 2 D MXene and r GO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of-54.1 d B at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.展开更多
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(51725101,11727807,51672050,61790581)the Ministry of Science and Technology of China(2018YFA0209102)。
文摘Ti_(3)C_(2)Tx MXene is widely regarded as a potential micro-wave absorber due to its dielectric multi-layered structure.However,missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condi-tion.Herein,with the inspiration from dielectric-magnetic synergy,this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method.Ni2+ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption.Benefiting from the possible“seed-germination”effect,the“seeds”Ni^(2+)grow into“buds”Ni nanoparticles and“stem”carbon nanotubes(CNTs)from the enlarged“soil”of MXene skeleton.Due to the improved impedance matching con-dition,the MXene-CNTs/Ni hybrid holds a superior microwave absorp-tion performance of−56.4 dB at only 2.4 mm thickness.Such a distinctive 3D architecture endows the hybrids:(i)a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability,(ii)a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability,confirmed by the off-axis electron holography.These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.
基金This work was supported by the National Natural Science Foundation of China(11727807,51725101,51672050,61790581,22088101)the Ministry of Science and Technology of China(973 Project No.2018YFA0209102)Open access funding provided by Shanghai Jiao Tong University
文摘MXene, as a rising star of two-dimensional(2 D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5 G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic selfassembly strategy to fabricate magnetized MXene-r GO/Co Ni film was reported. Inside the synthesized composite film, r GO nanosheets decorated with highly dispersed Co Ni nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic Fe Co alloy nanoparticles on the r GO substrate, the entire MXener GO/Co Ni film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous heterointerfaces between 2 D MXene and r GO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of-54.1 d B at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.