期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Generating highly active oxide-phosphide heterostructure through interfacial engineering to break the energy scaling relation toward urea-assisted natural seawater electrolysis
1
作者 Ngoc Quang Tran Nam Hoang Vu +6 位作者 Jianmin Yu Khanh Vy Pham Nguyen Thuy Tien Nguyen Tran Thuy-Kieu Truong lishan peng Thi Anh Le Yoshiyuki Kawazoe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期687-699,I0014,共14页
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t... Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports. 展开更多
关键词 Interfacial engineering Break scaling relationships Doping Natural seawater splitting Urea electrolysis
在线阅读 下载PDF
Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles 被引量:2
2
作者 Lijuan Lu lishan peng +3 位作者 Li Li Jing Li Xun Huang Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期52-56,I0003,共6页
This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation o... This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte. 展开更多
关键词 Hydrogen oxidation reaction Pt-Au alloy NANOPARTICLES Alkaline electrolyte
在线阅读 下载PDF
Insight into the boosted activity of TiO2–CoP composites for hydrogen evolution reaction:Accelerated mass transfer,optimized interfacial water,and promoted intrinsic activity
3
作者 Mingming Deng Hongmei Yang +6 位作者 lishan peng Ling Zhang Lianqiao Tan Guiju He Minhua Shao Li Li Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期111-120,I0005,共11页
The use of abundant elements in the earth as electrocatalytic hydrogen production catalysts is of great significance for hydrogen energy cycling.Herein,we report amorphous TiO_(2)-decorated CoP/NF(TiO_(2)–CoP/NF)as a... The use of abundant elements in the earth as electrocatalytic hydrogen production catalysts is of great significance for hydrogen energy cycling.Herein,we report amorphous TiO_(2)-decorated CoP/NF(TiO_(2)–CoP/NF)as an excellent electrocatalyst for alkaline hydrogen evolution reaction(HER).The welldispersed amorphous TiO_(2)on nanoneedle-like CoP arrays preserves the crystal structure of CoP and changes its electronic structure by interfacial charge transfer.Compared to CoP/NF catalyst,the Ti O_(2)–CoP/NF composite catalyst exhibits high HER activity with an overpotential of 61 mV at 10 mA cm^(-2)and high stability.Importantly,it almost maintains the Volmer step as a rate-determining step(RDS)and the Tafel slope at a wide cathodic potential range showing the fast kinetics under large polarization regions.Theoretical simulations reveal that the combination of TiO_(2)and CoP selectively accelerates the hydrated K+diffusion,regulates the interfacial water orientation to adapt to the subsequent smooth water dissociation,and optimizes*H adsorption/H_(2)desorption.The strengthened coupling of HER multi-scale-processes on transition metal compound composites catalysts is the underlying mechanism for improving HER activity. 展开更多
关键词 Alkaline water electrolysis Transition metal compound Composite catalysts HER Density functional theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部