This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker...This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.展开更多
Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 v...Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 vacancies in NiOx film by controlling deposition temperature in a hot-casting process,resulting the change of coordination structure and charge state of NiOx.Moreover,the change of the HOMO level of NiOx makes it more compatible with perovskite to decrease energy losses and enhance hole carrier injection efficiency.Besides,the defect modulation in the electronic structure of NiOx is beneficial for increasing the electrical conductivity and mobility,which are considered to achieve the balance of charge carrier transport and avoid charge accumulation at the interface between perovskite and HTL effectively.Both experimental analyses and theoretical calculations reveal the increase of nickel vacancy defects change the electronic structure of NiOx by increasing the ratio of Ni3^+/Ni2^+-and improving the p-type characteristics.Accordingly,an optimal deposition temperature at 120℃enabled a 36.24%improvement in the power conversion efficiency compared to that deposited at room temperature(25℃).Therefore,this work provides a facile method to manipulate the electronic structure of NiOx to improve the charge carrier transport and photovoltaic performance of related PSCs.展开更多
Organic-inorganic metal halide perovskite solar cells(PSCs) have recently been considered as one of the most competitive contenders to commercial silicon solar cells in the photovoltaic field.The deposition process of...Organic-inorganic metal halide perovskite solar cells(PSCs) have recently been considered as one of the most competitive contenders to commercial silicon solar cells in the photovoltaic field.The deposition process of a perovskite film is one of the most critical factors affecting the quality of the film formation and the photovoltaic performance.A hot-casting technique has been widely implemented to deposit high-quality perovskite films with large grain size,uniform thickness,and preferred crystalline orientation.In this review,we first review the classical nucleation and crystal growth theory and discuss those factors affecting the hot-casted perovskite film formation.Meanwhile,the effects of the deposition parameters such as temperature,thermal annealing,precursor chemistry,and atmosphere on the preparation of high-quality perovskite films and high-efficiency PSC devices are comprehensively discussed.The excellent stability of hot-casted perovskite films and integration with scalable deposition technology are conducive to the commercialization of PSCs.Finally,some open questions and future perspectives on the maturity of this technology toward the upscaling deposition of perovskite film for related optoelectronic devices are presented.展开更多
基金supported by the National Natural Science Foundation of China(U21A20331,81903743,22005322,22279151,and 22275004)National Science Fund for Distinguished Young Scholars(21925506).
文摘This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells(PSCs).Via A-site cation engineering,a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine(CMA^(+))cation,which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations,compared to the rigid phenethyl methylamine(PEA^(+))analog.It demonstrates a significantly lower non-radiative recombination rate,even though the two types of bulky cations have similar chemical passivation effects on perovskite,which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation.The resulting PSCs achieve an exceptional power conversion efficiency(PCE)of 25.5%with a record-high opencircuit voltage(V_(OC))of 1.20 V for narrow bandgap perovskite(FAPbI_(3)).The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
基金financially supported by the National Natural Science Foundation of China NSFC(51702038)the Recruitment Program for Young Professionals+1 种基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support。
文摘Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 vacancies in NiOx film by controlling deposition temperature in a hot-casting process,resulting the change of coordination structure and charge state of NiOx.Moreover,the change of the HOMO level of NiOx makes it more compatible with perovskite to decrease energy losses and enhance hole carrier injection efficiency.Besides,the defect modulation in the electronic structure of NiOx is beneficial for increasing the electrical conductivity and mobility,which are considered to achieve the balance of charge carrier transport and avoid charge accumulation at the interface between perovskite and HTL effectively.Both experimental analyses and theoretical calculations reveal the increase of nickel vacancy defects change the electronic structure of NiOx by increasing the ratio of Ni3^+/Ni2^+-and improving the p-type characteristics.Accordingly,an optimal deposition temperature at 120℃enabled a 36.24%improvement in the power conversion efficiency compared to that deposited at room temperature(25℃).Therefore,this work provides a facile method to manipulate the electronic structure of NiOx to improve the charge carrier transport and photovoltaic performance of related PSCs.
基金financially supported by the National Natural Science Foundation of China NSFC (51702038)the Sichuan Science and Technology Program (2020YFG0061)+1 种基金the Recruitment Program for Young Professionals. L. Ding thanks National Key Research and Development Program of China (2017YFA0206600)National Natural Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support。
文摘Organic-inorganic metal halide perovskite solar cells(PSCs) have recently been considered as one of the most competitive contenders to commercial silicon solar cells in the photovoltaic field.The deposition process of a perovskite film is one of the most critical factors affecting the quality of the film formation and the photovoltaic performance.A hot-casting technique has been widely implemented to deposit high-quality perovskite films with large grain size,uniform thickness,and preferred crystalline orientation.In this review,we first review the classical nucleation and crystal growth theory and discuss those factors affecting the hot-casted perovskite film formation.Meanwhile,the effects of the deposition parameters such as temperature,thermal annealing,precursor chemistry,and atmosphere on the preparation of high-quality perovskite films and high-efficiency PSC devices are comprehensively discussed.The excellent stability of hot-casted perovskite films and integration with scalable deposition technology are conducive to the commercialization of PSCs.Finally,some open questions and future perspectives on the maturity of this technology toward the upscaling deposition of perovskite film for related optoelectronic devices are presented.