The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A roun...The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.展开更多
文摘The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.