Background The associations between sugary beverages and genetic predisposition to depression risk remain unclear.Aims This study aimed to investigate the associations of sugar-sweetened beverages(SSBs),artificially s...Background The associations between sugary beverages and genetic predisposition to depression risk remain unclear.Aims This study aimed to investigate the associations of sugar-sweetened beverages(SSBs),artificially sweetened beverages(ASBs)and natural juices(NJs)with depression and to assess whether these associations were modified by genetic predisposition.Methods We used data from the UK Biobank of 180599 individuals aged 39-72 years who were depression-free at baseline.Dietary intake of SSBs,ASBs and NJs was accessed by a 24-hour dietary recall between 2009 and 2012.The Polygenic Risk Score for depression was estimated and categorised as low(lowest tertile),intermediate(tertile 2)and high(highest tertile),.Cox proportional hazard and substitution models were conducted to evaluate hazard ratios(HRs)and 95%Cls.Results Over the 12-year follow-up,4915 individuals developed depression.Higher consumption(>2 units/day)of SSBs(HR:1.26,95%CI 1.12 to 1.43)and ASBs(HR:1.40,95%Cl 1.23 to 1.60)were both associated with an increased risk of depression.However,moderate consumption(>0-1 units/day)of NJs was associated with a lower risk of depression(HR:0.89,95%CI 0.83 to 0.95).Furthermore,genetic predisposition did not modify these associations(p interaction>0.05).In substitution models,the HRs for depression risk were 0.94(95%CI 0.89 to 0.99)and 0.89(95%CI 0.85 to 0.94),respectively,when 1 unit/day of SSBs or ASBs was replaced by an equivalent intake of NJs.Conclusions Higher consumption of SSBs and ASBs was associated with an increased risk of depression;in contrast,moderate consumption of NJs was inversely associated with a lower risk of depression.In theory,substituting SSBs and ASBswith NJs would suppose a reduction of depression risk.展开更多
We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradi...We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend,with precursor concentrations from pure Si Cl4to 0%SiC l4in CH2Cl2,and electron beam intensity ranges of two orders of magnitude,showing good controllability of the deposition.Secondary electrons contributed to the determination of the lateral sizes of the nanostructures,while the primary beam appeared to have an effect in reducing the vertical growth rate.These results can be used to generate donut-shaped nanostructures.Using a scanning electron beam,line structures with both branched and unbranched morphologies were also obtained.The liquid-phase electron-beaminduced deposition technology is shown to be an effective tool for advanced nanostructured material generation.展开更多
基金supported by National Natural Science Foundation of China(7191010700,91746205).
文摘Background The associations between sugary beverages and genetic predisposition to depression risk remain unclear.Aims This study aimed to investigate the associations of sugar-sweetened beverages(SSBs),artificially sweetened beverages(ASBs)and natural juices(NJs)with depression and to assess whether these associations were modified by genetic predisposition.Methods We used data from the UK Biobank of 180599 individuals aged 39-72 years who were depression-free at baseline.Dietary intake of SSBs,ASBs and NJs was accessed by a 24-hour dietary recall between 2009 and 2012.The Polygenic Risk Score for depression was estimated and categorised as low(lowest tertile),intermediate(tertile 2)and high(highest tertile),.Cox proportional hazard and substitution models were conducted to evaluate hazard ratios(HRs)and 95%Cls.Results Over the 12-year follow-up,4915 individuals developed depression.Higher consumption(>2 units/day)of SSBs(HR:1.26,95%CI 1.12 to 1.43)and ASBs(HR:1.40,95%Cl 1.23 to 1.60)were both associated with an increased risk of depression.However,moderate consumption(>0-1 units/day)of NJs was associated with a lower risk of depression(HR:0.89,95%CI 0.83 to 0.95).Furthermore,genetic predisposition did not modify these associations(p interaction>0.05).In substitution models,the HRs for depression risk were 0.94(95%CI 0.89 to 0.99)and 0.89(95%CI 0.85 to 0.94),respectively,when 1 unit/day of SSBs or ASBs was replaced by an equivalent intake of NJs.Conclusions Higher consumption of SSBs and ASBs was associated with an increased risk of depression;in contrast,moderate consumption of NJs was inversely associated with a lower risk of depression.In theory,substituting SSBs and ASBswith NJs would suppose a reduction of depression risk.
基金supported by the U.S.Department of Energy under grants DE-FG02-07ER46453 and DEFG02-07ER46471supports from the Shanghai Leading Academic Discipline Project(B502)+4 种基金the Shanghai Key Laboratory Project(08DZ2230500)the Science and Technology Commission of Shanghai Municipality(11nm0507000)the State Key Laboratory of Functional Materials for Informatics Open Project(SKL201306)the Shanghai Pujiang Program(13PJ1401700)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry are highly acknowledged
文摘We studied silicon,carbon,and SiC xnanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems.Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend,with precursor concentrations from pure Si Cl4to 0%SiC l4in CH2Cl2,and electron beam intensity ranges of two orders of magnitude,showing good controllability of the deposition.Secondary electrons contributed to the determination of the lateral sizes of the nanostructures,while the primary beam appeared to have an effect in reducing the vertical growth rate.These results can be used to generate donut-shaped nanostructures.Using a scanning electron beam,line structures with both branched and unbranched morphologies were also obtained.The liquid-phase electron-beaminduced deposition technology is shown to be an effective tool for advanced nanostructured material generation.