OBJECTIVE To employ pharmacophore modeling to identify a TACE inhibitor from an inhouse database of 66 organic compounds.METHODS To identify the common features required for TACE inhibition,we generated a pharmacophor...OBJECTIVE To employ pharmacophore modeling to identify a TACE inhibitor from an inhouse database of 66 organic compounds.METHODS To identify the common features required for TACE inhibition,we generated a pharmacophore model from a set of TACE-selective inhibitor using the Common Feature Pharmacophore Model protocol implemented in Discovery Studio 3.1.1.A fluorimetric assay was used to investigate the potential ability of compounds to inhibit TACE enzymatic activity.The ability of compound 1 to inhibit TACE activity in a human monocyte THP-1 cell line was evaluated by ELISA.RESULTS In this study,apharmacophore model constructed from a training set of TACE inhibitors was used to screen an in-house database of organic compounds,from which compound 1 emerged as a top candidate.In a cell-free assay,compound 1inhibited TACE enzymatic activity in a dose-dependent manner.Moreover,compound 1 inhibited the production of soluble TNF-αin human acute monocytic leukemia THP-1 cells without impacting nitric oxide production,and exhibited anti-proliferative activity against THP-1cells.CONCLUSION Compound 1 was found to inhibit TACE enzymatic activity in a cell-free system and LPS-induced TNF-αsecretion in cellulo.We envisage that compound 1 may be employed as a useful scaffold for the development of more potent TACE inhibitors.展开更多
OBJECTIVE To apply molecular docking techniques to identify STAT3 inhibitors from a database of over 90 000 natural product and natural product-like compounds.METHODS Molecular docking was used for the virtual screeni...OBJECTIVE To apply molecular docking techniques to identify STAT3 inhibitors from a database of over 90 000 natural product and natural product-like compounds.METHODS Molecular docking was used for the virtual screening campaign and hit validation of STAT3 inhibitor.To further evaluate the potency of candidates at inhibiting STAT3-DNA binding activity,a STAT3 and STAT1transcription factor ELISA was performed.A dual-luciferase reporter assay,co-immunoprecipitation assay and Western blotting were carried out for the investigation of effect of compound 1 on STAT3-driven transcription,STAT3 dimerization and STAT3 phosphorylation.Finally,the cell toxicity of compound 1 was assessed by using MTT assay on different cell lines.RESULTS The virtual screening campaign furnished fourteen hit compounds,from which compound 1 emerged as a top candidate.Compound 1inhibited STAT3DNA-binding activity in vitro and attenuated STAT3-directed transcription in cellulo with selectivity over STAT1 and comparable potency to the wellknown STAT3 inhibitor S3I-201.Furthermore,compound 1 inhibited STAT3 dimerization and decreased STAT3 phosphorylation in cells without affecting STAT1 dimerization and phosphorylation.Compound 1 also exhibited selective anti-proliferative activity against cancer cells over normal cells in vitro.CONCLUSION The benzofuran derivative 1 was identified as a potential inhibitor of STAT3 dimerization using in silico screening.Molecular docking analysis suggested that compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain.To the best of our knowledge,compound 1 has not been reported as a STAT3 inhibitor and no biological activity of compound 1 has been presented in the literature.展开更多
基金The project supported by Hong Kong Baptist University(FRG2/12-13/021and FRG2/13-14/008)Centre for Cancer and Inflammation Research,School of Chinese Medicine(CCIR-SCM,HKBU)+5 种基金the Health and Medical Research Fund(HMRF/13121482)the Research Grants Council(HKBU/201811,HKBU/204612,and HKBU/201913)the French National Research Agency/Research Grants Council Joint Research Scheme(A-HKBU201/12)the Science and Technology Development Fund,Macao SAR(103/2012/A3)the University of Macao〔MYRG091(Y3-L2)-ICMS12-LCH,MYRG121(Y3-L2)-ICMS12-LCH and MRG023/LCH/2013/ICMS〕and University Research Committee Grant(RG55/06)from Nanyang Technological University and a Science and Engineering Research Council Grant(092 101 0053)from A*STAR,Singapore
文摘OBJECTIVE To employ pharmacophore modeling to identify a TACE inhibitor from an inhouse database of 66 organic compounds.METHODS To identify the common features required for TACE inhibition,we generated a pharmacophore model from a set of TACE-selective inhibitor using the Common Feature Pharmacophore Model protocol implemented in Discovery Studio 3.1.1.A fluorimetric assay was used to investigate the potential ability of compounds to inhibit TACE enzymatic activity.The ability of compound 1 to inhibit TACE activity in a human monocyte THP-1 cell line was evaluated by ELISA.RESULTS In this study,apharmacophore model constructed from a training set of TACE inhibitors was used to screen an in-house database of organic compounds,from which compound 1 emerged as a top candidate.In a cell-free assay,compound 1inhibited TACE enzymatic activity in a dose-dependent manner.Moreover,compound 1 inhibited the production of soluble TNF-αin human acute monocytic leukemia THP-1 cells without impacting nitric oxide production,and exhibited anti-proliferative activity against THP-1cells.CONCLUSION Compound 1 was found to inhibit TACE enzymatic activity in a cell-free system and LPS-induced TNF-αsecretion in cellulo.We envisage that compound 1 may be employed as a useful scaffold for the development of more potent TACE inhibitors.
基金The project supported by Hong Kong Baptist University(FRG2/12-13/021and FRG2/13-14/008)Centre for Cancer and Inflammation Research,School of Chinese Medicine(CCIR-SCM,HKBU)+4 种基金the Health and Medical Research Fund(HMRF/13121482)the Research Grants Council(HKBU/201811,HKBU/204612and HKBU/201913)the French National Research Agency/Research Grants Council Joint Research Scheme(A-HKBU201/12)the Science and Technology Development Fund,Macao SAR(103/2012/A3,001/2012/A)the University of Macao〔MYRG091(Y3-L2)-ICMS12-LCH,MYRG121(Y3-L2)-ICMS12-LCH,MRG007/LCH/2014/ICMS and MRG023/LCH/2013/ICMS〕
文摘OBJECTIVE To apply molecular docking techniques to identify STAT3 inhibitors from a database of over 90 000 natural product and natural product-like compounds.METHODS Molecular docking was used for the virtual screening campaign and hit validation of STAT3 inhibitor.To further evaluate the potency of candidates at inhibiting STAT3-DNA binding activity,a STAT3 and STAT1transcription factor ELISA was performed.A dual-luciferase reporter assay,co-immunoprecipitation assay and Western blotting were carried out for the investigation of effect of compound 1 on STAT3-driven transcription,STAT3 dimerization and STAT3 phosphorylation.Finally,the cell toxicity of compound 1 was assessed by using MTT assay on different cell lines.RESULTS The virtual screening campaign furnished fourteen hit compounds,from which compound 1 emerged as a top candidate.Compound 1inhibited STAT3DNA-binding activity in vitro and attenuated STAT3-directed transcription in cellulo with selectivity over STAT1 and comparable potency to the wellknown STAT3 inhibitor S3I-201.Furthermore,compound 1 inhibited STAT3 dimerization and decreased STAT3 phosphorylation in cells without affecting STAT1 dimerization and phosphorylation.Compound 1 also exhibited selective anti-proliferative activity against cancer cells over normal cells in vitro.CONCLUSION The benzofuran derivative 1 was identified as a potential inhibitor of STAT3 dimerization using in silico screening.Molecular docking analysis suggested that compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain.To the best of our knowledge,compound 1 has not been reported as a STAT3 inhibitor and no biological activity of compound 1 has been presented in the literature.