The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culp...The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.展开更多
Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Her...Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Herein,hollow oxygen deficiency-enriched NiFe_(2)O_(4) is synthesized by pyrolytic FeNi bimetallic MOF.The defects of rGO during carbonization can act as nucleation sites for FeNi particles.After nucleation and N doping,the FeNi particles were served as catalysts for the deposition of dissolved carbon in the defects of the N/rGO.These deposited carbon,like a bridge,connect N/rGO and hollow oxygen deficiency-enriched NiFe_(2)O_(4) together,which giving full play to the advantages of N/rGO in fast electron transfer,thereby improving its catalytic activity.The resultant NiFe_(2)O_(4)@N/rGO-800 exhibits a low overpotential of 252 mV at 20 mA cm^(-2) for OER and 157 mV at 10 mA cm^(-2) for HER in 1 M KOH,respectively.When used as bifunctional electrodes for overall water splitting,it also shows low cell voltage of 1.60 V and 1.67 V at 10 and 20 mA cm^(-2),respectively.展开更多
The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a hig...The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.展开更多
The design of the insulated core transformer(ICT)needs to consider the flux leakage effects.An equivalent linear circuit model is proposed based on the principle of duality.It is composed by two types of leakage induc...The design of the insulated core transformer(ICT)needs to consider the flux leakage effects.An equivalent linear circuit model is proposed based on the principle of duality.It is composed by two types of leakage inductances:conventional leakage between windings and special leakage introduced mainly by the insulation gaps.The values of leakage inductances depend on the dimensions of the core,gaps,or windings and the property of magnetic materials.The circuit allows for quantitatively evaluating influences of ICT internal parameters on its output properties.The winding self- and mutual inductance matrix is mathematically converted to derive the inductance formula.As an example,the leakage parameters of a sixstage two-dimensional(2D) ICT are calculated and analyzed.展开更多
基金financially supported by the National Natural Science Foundation of China(U1904192,62074052,52072327,61974173,61874159 and 51802081)the Key Science and Technology Research Project of Education Department of Henan Province(19A140003)+1 种基金the Key Science and Technology Program of Henan Province(192102210001)Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(202101510004)。
文摘The development of kesterite photovoltaic solar cells has been hindered by large open-circuit voltage(V_(oc))deficit.Recently,Snzn deep point defect and associative defect cluster have been recognized as the main culprit for the Voc losses.Therefore,manipulating the deep-level donor of Snzn antisite defects is crucial for breaking through the bottleneck of present Cu_(2) ZnSn(S,Se)_(4)(CZTSSe)photovoltaic technology.In this study,the Snzn deep traps in CZTSSe absorber layer are suppressed by incorporation of Ge.The energy levels and concentration of Snzn defects measured by deep-level transient spectroscopy(DLTS)decrease significantly.In addition,the grain growth of CZTSSe films is also promoted due to Ge implantation,yielding the high quality absorber layer.Consequently,the efficiency of CZTSSe solar cells increases from 9.15%to 11.48%,largely attributed to the 41 mV Voc increment.
基金financially supported by the National Natural Science Foundation of China(Nos.21878231,21676202 and 51603145)Natural Science Foundation of Tianjin(Nos.19JCZDJC37300 and 17JCZDJC38100)supported by the Science and Technology Plans of Tianjin(Nos.17PTSYJC00040 and 18PTSYJC00180)。
文摘Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Herein,hollow oxygen deficiency-enriched NiFe_(2)O_(4) is synthesized by pyrolytic FeNi bimetallic MOF.The defects of rGO during carbonization can act as nucleation sites for FeNi particles.After nucleation and N doping,the FeNi particles were served as catalysts for the deposition of dissolved carbon in the defects of the N/rGO.These deposited carbon,like a bridge,connect N/rGO and hollow oxygen deficiency-enriched NiFe_(2)O_(4) together,which giving full play to the advantages of N/rGO in fast electron transfer,thereby improving its catalytic activity.The resultant NiFe_(2)O_(4)@N/rGO-800 exhibits a low overpotential of 252 mV at 20 mA cm^(-2) for OER and 157 mV at 10 mA cm^(-2) for HER in 1 M KOH,respectively.When used as bifunctional electrodes for overall water splitting,it also shows low cell voltage of 1.60 V and 1.67 V at 10 and 20 mA cm^(-2),respectively.
基金supported by the National MCF Energy R&D Program(No.2018YFE0312300)the National Key Research and Development Program of China(No.2017YFA0402500)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.Y45ETY2302)。
文摘The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors.
基金supported by National Natural Science Foundation of China(No.11305068)the‘‘2011 project’’organized by Hubei Collaboration Innovation Center of Non-power Nuclear Technology
文摘The design of the insulated core transformer(ICT)needs to consider the flux leakage effects.An equivalent linear circuit model is proposed based on the principle of duality.It is composed by two types of leakage inductances:conventional leakage between windings and special leakage introduced mainly by the insulation gaps.The values of leakage inductances depend on the dimensions of the core,gaps,or windings and the property of magnetic materials.The circuit allows for quantitatively evaluating influences of ICT internal parameters on its output properties.The winding self- and mutual inductance matrix is mathematically converted to derive the inductance formula.As an example,the leakage parameters of a sixstage two-dimensional(2D) ICT are calculated and analyzed.