现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语...现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语义信息提取方法,首先通过设计语义映射规则将IFC(Industry Foundation Classes)模型的实体、属性、物理信息转化为知识图谱,形成可用于语义分析的结构化语义网络,然后采用TransE嵌入模型对构建的BIM知识图谱进行嵌入学习,通过向量化表示增强信息提取能力。以某三层综合建筑楼为研究对象,提取并构建了包含996个BIM语义节点和2173条关系的知识图谱,进一步采用TransE模型进行语义信息嵌入,对提取结果进行验证。实验结果表明:知识图谱能有效提取BIM建筑构件语义信息,选取最优参数后进行TransE模型嵌入学习,实体语义成功率为97.27%,该方法能够精准捕捉建筑构件各类语义信息的关键内容,减少信息遗漏和提取错误,为BIM模型信息分析和决策提供了新思路。展开更多
Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the comb...Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the combat group,this task suffers from credit assignment problem more than other rein-forcement learning tasks.This study uses reward shaping to relieve the credit assignment problem and improve policy train-ing for the new generation of large-scale unmanned combat operations.We first prove that multiple reward shaping func-tions would not change the Nash Equilibrium in stochastic games,providing theoretical support for their use.According to the characteristics of combat operations,we propose tactical reward shaping(TRS)that comprises maneuver shaping advice and threat assessment-based attack shaping advice.Then,we investigate the effects of different types and combinations of shaping advice on combat policies through experiments.The results show that TRS improves both the efficiency and attack accuracy of combat policies,with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the base-line strategy.展开更多
文摘现有相关工程与技术多关注建筑构件几何信息的映射,构件语义信息挖掘侧重于工程项目需要的单一信息,导致BIM(Building Information Modeling)数据在语义交互和智能分析中的潜力未被充分挖掘。该文提出一种基于知识图谱的BIM建筑构件语义信息提取方法,首先通过设计语义映射规则将IFC(Industry Foundation Classes)模型的实体、属性、物理信息转化为知识图谱,形成可用于语义分析的结构化语义网络,然后采用TransE嵌入模型对构建的BIM知识图谱进行嵌入学习,通过向量化表示增强信息提取能力。以某三层综合建筑楼为研究对象,提取并构建了包含996个BIM语义节点和2173条关系的知识图谱,进一步采用TransE模型进行语义信息嵌入,对提取结果进行验证。实验结果表明:知识图谱能有效提取BIM建筑构件语义信息,选取最优参数后进行TransE模型嵌入学习,实体语义成功率为97.27%,该方法能够精准捕捉建筑构件各类语义信息的关键内容,减少信息遗漏和提取错误,为BIM模型信息分析和决策提供了新思路。
文摘Future unmanned battles desperately require intelli-gent combat policies,and multi-agent reinforcement learning offers a promising solution.However,due to the complexity of combat operations and large size of the combat group,this task suffers from credit assignment problem more than other rein-forcement learning tasks.This study uses reward shaping to relieve the credit assignment problem and improve policy train-ing for the new generation of large-scale unmanned combat operations.We first prove that multiple reward shaping func-tions would not change the Nash Equilibrium in stochastic games,providing theoretical support for their use.According to the characteristics of combat operations,we propose tactical reward shaping(TRS)that comprises maneuver shaping advice and threat assessment-based attack shaping advice.Then,we investigate the effects of different types and combinations of shaping advice on combat policies through experiments.The results show that TRS improves both the efficiency and attack accuracy of combat policies,with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the base-line strategy.