Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two em...Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.展开更多
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u...A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.展开更多
Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the ...Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.展开更多
文摘Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.
文摘A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.
文摘Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.