期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于扩张注意力与深度最优化校正的多视图三维重建网络
1
作者 徐蕾 雷有元 +3 位作者 朱军 周杰 邵根富 张家铭 《数据采集与处理》 北大核心 2025年第4期1023-1034,共12页
与CVP-MVSNet网络和CasMVSNet网络相比,MVSNet重建网络存在的内存消耗量问题降低了模型处理高分辨率图像时的内存消耗量以及重建点云的准确性误差,但是两者点云的完整性误差却很大。针对此问题,本文提出了基于扩张注意力与深度最优化校... 与CVP-MVSNet网络和CasMVSNet网络相比,MVSNet重建网络存在的内存消耗量问题降低了模型处理高分辨率图像时的内存消耗量以及重建点云的准确性误差,但是两者点云的完整性误差却很大。针对此问题,本文提出了基于扩张注意力与深度最优化校正的多视图三维重建网络DA-MVSNet。DA-MVSNet是以CasMVSNet作为基准网络,额外引入一个融合了深度可分离卷积的并行空洞卷积与注意力模块构成的特征增强网络,增强了重建网络对输入视图的全局特征捕获能力,提升了重建点云的完整度。为进一步提升输出深度图的精度,防止特征增强网络提取过多的视图非相关背景信息导致重建点云准确度的下降,在网络的输出部分还引入了一个基于非线性最小二乘的最优化校正机制模块。结果表明,DA-MVSNet重建网络在室内场景数据集DTU上运行得到的重建点云的准确性误差与完整性误差分别降低了2.5%和4.7%,具有较好的综合性能。但也由于额外引入了增强网络和校正机制,其内存和时间消耗均约高于CVP-MVSNet与CasMVSNet网络。 展开更多
关键词 深度学习 三维重建 注意力机制 空洞卷积 最优化校正
在线阅读 下载PDF
Self-supervised learning artificial intelligence noise reduction technology based on the nearest adjacent layer in ultra-low dose CT of urinary calculi 被引量:3
2
作者 ZHOU Cheng LIU Yang +4 位作者 QIU Yingwei HE Daijun YAN Yu LUO Min lei youyuan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1249-1253,共5页
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho... Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT. 展开更多
关键词 urinary calculi tomography X-ray computed artificial intelligence prospective studies
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部