A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an...A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results.展开更多
The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types ...The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.展开更多
Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,...Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,the measurement and evaluation of Pb nuclear data are highly regarded in nuclear scientific research,emphasizing its crucial role in the field.Using the time-of-flight(ToF)method,the neutron leakage spectra from three^(nat)Pb samples were measured at 60°and 120°based on the neutronics integral experimental facility at the China Institute of Atomic Energy(CIAE).The^(nat)Pb sample sizes were30 cm×30 cm×5 cm,30 cm×30 cm×10 cm,and 30 cm×30 cm×15 cm.Neutron sources were generated by the Cockcroft-Walton accelerator,producing approximately 14.5 MeV and 3.5 MeV neutrons through the T(d,n)^(4)He and D(d,n)^(3)He reactions,respectively.Leakage neutron spectra were also calculated by employing the Monte Carlo code of MCNP-4C,and the nuclear data of Pb isotopes from four libraries:CENDL-3.2,JEFF-3.3,JENDL-5,and ENDF/B-Ⅷ.0 were used individually.By comparing the simulation and experimental results,improvements and deficiencies in the evaluated nuclear data of the Pb isotopes were analyzed.Most of the calculated results were consistent with the experimental results;however,a few areas did not fit well.In the(n,el)energy range,the simulated results from CENDL-3.2 were significantly overestimated;in the(n,inl)D and the(n,inl)C energy regions,the results from CENDL-3.2 and ENDF/B-Ⅷ.0 were significantly overestimated at 120°,and the results from JENDL-5 and JEFF-3.3 are underestimated at 60°in the(n,inl)D energy region.The calculated spectra were analyzed by comparing them with the experimental spectra in terms of the neutron spectrum shape and C/E values.The results indicate that the theoretical simulations,using different data libraries,overestimated or underestimated the measured values in certain energy ranges.Secondary neutron energies and angular distributions in the data files have been presented to explain these discrepancies.展开更多
基金This work was supported by the general program(No.1177531)joint funding(No.U2067205)from the National Natural Science Foundation of China.
文摘A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results.
基金supported by the Youth Talent Program of China National Nuclear Corporationthe Continuous-Support Basic Scientific Research Project(BJ010261223282)+1 种基金the National Natural Science Foundation of China(No.11790321)the Research and development project of China National Nuclear Corporation。
文摘The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.
基金supported by the National Natural Science Foundation of China(Nos.11775311 and U2067205)the Stable Support Basic Research Program Grant(BJ010261223282)the Research and Development Project of China National Nuclear Corporation。
文摘Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,the measurement and evaluation of Pb nuclear data are highly regarded in nuclear scientific research,emphasizing its crucial role in the field.Using the time-of-flight(ToF)method,the neutron leakage spectra from three^(nat)Pb samples were measured at 60°and 120°based on the neutronics integral experimental facility at the China Institute of Atomic Energy(CIAE).The^(nat)Pb sample sizes were30 cm×30 cm×5 cm,30 cm×30 cm×10 cm,and 30 cm×30 cm×15 cm.Neutron sources were generated by the Cockcroft-Walton accelerator,producing approximately 14.5 MeV and 3.5 MeV neutrons through the T(d,n)^(4)He and D(d,n)^(3)He reactions,respectively.Leakage neutron spectra were also calculated by employing the Monte Carlo code of MCNP-4C,and the nuclear data of Pb isotopes from four libraries:CENDL-3.2,JEFF-3.3,JENDL-5,and ENDF/B-Ⅷ.0 were used individually.By comparing the simulation and experimental results,improvements and deficiencies in the evaluated nuclear data of the Pb isotopes were analyzed.Most of the calculated results were consistent with the experimental results;however,a few areas did not fit well.In the(n,el)energy range,the simulated results from CENDL-3.2 were significantly overestimated;in the(n,inl)D and the(n,inl)C energy regions,the results from CENDL-3.2 and ENDF/B-Ⅷ.0 were significantly overestimated at 120°,and the results from JENDL-5 and JEFF-3.3 are underestimated at 60°in the(n,inl)D energy region.The calculated spectra were analyzed by comparing them with the experimental spectra in terms of the neutron spectrum shape and C/E values.The results indicate that the theoretical simulations,using different data libraries,overestimated or underestimated the measured values in certain energy ranges.Secondary neutron energies and angular distributions in the data files have been presented to explain these discrepancies.