期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An integrated PHM framework for radar systems through system structural decomposition
1
作者 WANG Hong kulevome delanyo kwame bensah ZHAO Zi’an 《Journal of Systems Engineering and Electronics》 2025年第1期95-107,共13页
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for rad... Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems. 展开更多
关键词 deep learning prognostics and health management(PHM) radar systems remaining useful life(RUL)
在线阅读 下载PDF
Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis 被引量:1
2
作者 kulevome delanyo kwame bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期233-246,共14页
Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of... Rolling element bearings are machine components used to allow circular movement and hence deliver forces between components of machines used in diverse areas of industry.The likelihood of failure has the propensity of increasing under prolonged operation and varying working conditions.Hence, the accurate fault severity categorization of bearings is vital in diagnosing faults that arise in rotating machinery.The variability and complexity of the recorded vibration signals pose a great hurdle to distinguishing unique characteristic fault features.In this paper, the efficacy and the leverage of a pre-trained convolutional neural network(CNN) is harnessed in the implementation of a robust fault classification model.In the absence of sufficient data, this method has a high-performance rate.Initially, a modified VGG16 architecture is used to extract discriminating features from new samples and serves as input to a classifier.The raw vibration data are strategically segmented and transformed into two representations which are trained separately and jointly.The proposed approach is carried out on bearing vibration data and shows high-performance results.In addition to successfully implementing a robust fault classification model, a prognostic framework is developed by constructing a health indicator(HI) under varying operating conditions for a given fault condition. 展开更多
关键词 bearing failure deep neural network fault classification health indicator prognostics and health management
在线阅读 下载PDF
Rolling bearing fault diagnostics based on improved data augmentation and ConvNet
3
作者 kulevome delanyo kwame bensah WANG Hong WANG Xuegang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1074-1084,共11页
Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real... Convolutional neural networks(CNNs)are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns.However,gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging.This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data.We begin by identifying relevant parameters that influence the construction of a spectrogram.We leverage the uncertainty principle in processing time-frequency domain signals,making it impossible to simultaneously achieve good time and frequency resolutions.A key determinant of this phenomenon is the window function's choice and length used in implementing the shorttime Fourier transform.The Gaussian,Kaiser,and rectangular windows are selected in the experimentation due to their diverse characteristics.The overlap parameter's size also influences the outcome and resolution of the spectrogram.A 50%overlap is used in the original data transformation,and±25%is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance.The best model reaches an accuracy of 99.98%and a cross-domain accuracy of 92.54%.When combined with data augmentation,the proposed model yields cutting-edge results. 展开更多
关键词 bearing failure short-time Fourier transform prognostics and health management data augmentation fault diagnosis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部