期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage 被引量:8
1
作者 junxian hu Yangyang Xie +1 位作者 Meng Yin Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期327-334,共8页
Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of ... Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications. 展开更多
关键词 Hard carbon Nitrogen doping Graphitic domains Potassium ion batteries Adsorption-intercalation mechanism
在线阅读 下载PDF
Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy 被引量:1
2
作者 Jingqiang Zheng Chaohong Guan +7 位作者 huangxu Li Yangyang Xie junxian hu Kai Zhang Bo Hong Yanqing Lai Jie Li Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期460-468,I0012,共10页
Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling... Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling is of great significance to achieving high energy densities.However,an in-depth investigation of the internal reaction is still lacking.In this work,the evolution process of solid sulfur species on carbon substrates is systematically studied by using an operando light microscope combined with in situ electrochemical impedance spectra technology.The observation of phenomena such as bulk solid sulfur species can form and dissolve independently of the conductive substrates and the transformation of supercooled liquid sulfur to crystalline sulfur.Based on the phenomena mentioned above,a possible mechanism was proposed in which the dissolution reaction of solid sulfur species is a spatially free reaction that involves isotropic physical dissolution,diffusion of molecules,and finally the electrochemical reaction.Correspondingly,the formation of solid sulfur species tends to be a form of crystallization in a saturated solution rather than electrodeposition,as is commonly believed.Our findings offer new insights into the reaction of sulfur cathodes and provide new opportunities to design advanced sulfur cathodes for Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Morphological evolution Supercooled liquid sulfur Operando light microscopy Liquid sulfur droplets
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部