MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk o...MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid solutions.In this work,we developed a water-free ionothermal synthesis of 2D Ti3C2 MXene via etching pristine Ti3AlC2 MAX in low-cost choline chloride and oxalic acid based deep eutectic solvents(DES)with the presence of NH4F,thus it was highly safe and convenient to operate solid precursor and product materials at room temperature.Benefited from the low vapor pressure and solvating properties of DES,the prepared Ti3C2(denoted as DES-Ti3C2)possessed a high purity up to 98% compared with 95% for HF etched Ti3C2(denoted as HF-Ti3C2).Notably,an expanded interlayer spacing of 1.35 nm could be achieved due to the intercalation of choline cations in DES-Ti3C2,larger than that of HF-Ti3C2(0.98 nm).As a result,the DES-Ti3C2 anodes exhibited enhanced lithium storage performance,such as high reversible capacity of 208 m Ah g-1at 0.5 A g-1,and long cycle life over 400 times,outperforming most reported pure MXene anodes.The ionothermal synthesis of MXene developed here may pave a new way to safely prepare other MXene for various energy relating applications.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.21601029, 21601030)the Open Project Program of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Nos.2017-33, 2017-26)the Fundamental Research Funds for the Central Universities of China (No.N180503012)。
文摘MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid solutions.In this work,we developed a water-free ionothermal synthesis of 2D Ti3C2 MXene via etching pristine Ti3AlC2 MAX in low-cost choline chloride and oxalic acid based deep eutectic solvents(DES)with the presence of NH4F,thus it was highly safe and convenient to operate solid precursor and product materials at room temperature.Benefited from the low vapor pressure and solvating properties of DES,the prepared Ti3C2(denoted as DES-Ti3C2)possessed a high purity up to 98% compared with 95% for HF etched Ti3C2(denoted as HF-Ti3C2).Notably,an expanded interlayer spacing of 1.35 nm could be achieved due to the intercalation of choline cations in DES-Ti3C2,larger than that of HF-Ti3C2(0.98 nm).As a result,the DES-Ti3C2 anodes exhibited enhanced lithium storage performance,such as high reversible capacity of 208 m Ah g-1at 0.5 A g-1,and long cycle life over 400 times,outperforming most reported pure MXene anodes.The ionothermal synthesis of MXene developed here may pave a new way to safely prepare other MXene for various energy relating applications.