Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the ge...Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J_(1)b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J_(1)b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C_(29) regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P_(1)f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P_(2)w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J_(1)b oils. The reconstruction of the oil accumulation process shows that the J_(1)b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P_(1)f source rock and leaked from T_(1)b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J_(1)b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag.展开更多
Background:Acute mountain sickness(AMS)is the mildest form of acute altitude illnesses,and consists of nonspecific symptoms when unacclimatized persons ascend to elevation of≥2500 m.Risk factors of AMS include:the al...Background:Acute mountain sickness(AMS)is the mildest form of acute altitude illnesses,and consists of nonspecific symptoms when unacclimatized persons ascend to elevation of≥2500 m.Risk factors of AMS include:the altitude,individual susceptibility,ascending rate and degree of pre-acclimatization.In the current study,we examined whether physiological response at low altitude could predict the development of AMS.Methods:A total of 111 healthy adult healthy volunteers participated in this trial;and 99(67 men and 32 women)completed the entire study protocol.Subjects were asked to complete a 9-min exercise program using a mechanically braked bicycle ergometer at low altitude(500 m).Heart rate,blood pressure(BP)and pulse oxygen saturation(SpO2)were recorded prior to and during the last minute of exercise.The ascent from 500 m to 4100 m was completed in 2 days.AMS was defined as≥3 points in a 4-item Lake Louise Score,with at least one point from headache wat 6–8 h after the ascent.Results:Among the 99 assessable subjects,47(23 men and 24 women)developed AMS at 4100 m.In comparison to the subjects without AMS,those who developed AMS had lower proportion of men(48.9%vs.84.6%,P<0.001),height(168.4±5.9 cm vs.171.3±6.1 cm,P=0.019),weight(62.0±10.0 kg vs.66.7±8.6 kg,P=0.014)and proportion of smokers(23.4%vs.51.9%,P=0.004).Multivariate regression analysis revealed the following independent risks for AMS:female sex(odds ratio(OR)=6.32,P<0.001),SpO2 change upon exercise at low altitude(OR=0.63,P=0.002)and systolic BP change after the ascent(OR=0.96,P=0.029).Women had larger reduction in SpO2 after the ascent,higher AMS percentage and absolute AMS score.Larger reduction of SpO2 after exercise was associated with both AMS incidence(P=0.001)and AMS score(P<0.001)in men but not in women.Conclusions:Larger SpO2 reduction after exercise at low altitude was an independent risk for AMS upon ascent.Such an association was more robust in men than in women.Trial registration:Chinese Clinical Trial Registration,ChiCTR1900025728.Registered 6 September 2019.展开更多
Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but ...Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste.展开更多
Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials...Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.展开更多
基金supported by the National Natural Science Foundation of China(No.41802179)Sichuan Science and Technology Program(No.2019YFH0037)the Foundation of the State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1906).
文摘Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J_(1)b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J_(1)b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J_(1)b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C_(29) regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P_(1)f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P_(2)w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J_(1)b oils. The reconstruction of the oil accumulation process shows that the J_(1)b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P_(1)f source rock and leaked from T_(1)b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J_(1)b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag.
基金supported by grants from the Research Project of PLA(BLJ18J007)the National Natural Science Foundation of China(81730054)the Ministry of Health of China(201002012)。
文摘Background:Acute mountain sickness(AMS)is the mildest form of acute altitude illnesses,and consists of nonspecific symptoms when unacclimatized persons ascend to elevation of≥2500 m.Risk factors of AMS include:the altitude,individual susceptibility,ascending rate and degree of pre-acclimatization.In the current study,we examined whether physiological response at low altitude could predict the development of AMS.Methods:A total of 111 healthy adult healthy volunteers participated in this trial;and 99(67 men and 32 women)completed the entire study protocol.Subjects were asked to complete a 9-min exercise program using a mechanically braked bicycle ergometer at low altitude(500 m).Heart rate,blood pressure(BP)and pulse oxygen saturation(SpO2)were recorded prior to and during the last minute of exercise.The ascent from 500 m to 4100 m was completed in 2 days.AMS was defined as≥3 points in a 4-item Lake Louise Score,with at least one point from headache wat 6–8 h after the ascent.Results:Among the 99 assessable subjects,47(23 men and 24 women)developed AMS at 4100 m.In comparison to the subjects without AMS,those who developed AMS had lower proportion of men(48.9%vs.84.6%,P<0.001),height(168.4±5.9 cm vs.171.3±6.1 cm,P=0.019),weight(62.0±10.0 kg vs.66.7±8.6 kg,P=0.014)and proportion of smokers(23.4%vs.51.9%,P=0.004).Multivariate regression analysis revealed the following independent risks for AMS:female sex(odds ratio(OR)=6.32,P<0.001),SpO2 change upon exercise at low altitude(OR=0.63,P=0.002)and systolic BP change after the ascent(OR=0.96,P=0.029).Women had larger reduction in SpO2 after the ascent,higher AMS percentage and absolute AMS score.Larger reduction of SpO2 after exercise was associated with both AMS incidence(P=0.001)and AMS score(P<0.001)in men but not in women.Conclusions:Larger SpO2 reduction after exercise at low altitude was an independent risk for AMS upon ascent.Such an association was more robust in men than in women.Trial registration:Chinese Clinical Trial Registration,ChiCTR1900025728.Registered 6 September 2019.
基金financially supported by the National Natural Science Foundation of China (22279122,52042403)the Zhejiang Provincial Natural Science Foundation of China (LZ22B030004)+2 种基金the Ministry of Education,Singapore,under its Academic Research Fund Tier 1 (RG10/22)the National Institute of Education,Singapore,under its Academic Research Fund (RI 1/21 EAH)National Institute of Education,Singapore,under its Start-Up Grant (NIE-SUG4/20AHX)。
文摘Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste.
基金Project supported by the Research on High Power Flexible Battery in All Sea Depth,China (Grant No.2020-XXXXXX-246-00)。
文摘Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.