With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of...With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.展开更多
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,micro...Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.展开更多
To investigate the spoilage characteristics of Jinhua ham,sensory scores,volatile compounds,biogenic amine,physicochemical parameters and microbial counts were evaluated between normal and spoiled hams.The results sho...To investigate the spoilage characteristics of Jinhua ham,sensory scores,volatile compounds,biogenic amine,physicochemical parameters and microbial counts were evaluated between normal and spoiled hams.The results showed that off-odors of spoiled hams were dominated by rancid,sour,sulfide and ammonia odors derived from these compounds including butanoic acid,methanethiol and dimethyl disulfide.Total content of biogenic amine in spoiled hams was significantly higher(more than 10-fold)compared with normal hams,and putrescine,cadaverine and histamine were the key components of biogenic amine of spoiled hams.Lower salt content,and higher moisture,TVB-N and thiobarbituric acid reactive substances(TBARS)values were observed in spoiled hams compared with normal hams.The populations of Enterobacteriaceae and Enterococcus of spoiled hams were obviously higher than that of normal hams.High moisture and low salt content caused the abnormal growth of Enterobacteriaceae and Enterococcus in spoiled hams,which contributed to the spoilage of Jinhua ham.展开更多
At the High Energy Photon Source (HEPS),a high orbital stability of typically 10% of the beam size and angular divergence must be achieved.The beam size at the insertion devices is 10μm horizontally and 1μm vertical...At the High Energy Photon Source (HEPS),a high orbital stability of typically 10% of the beam size and angular divergence must be achieved.The beam size at the insertion devices is 10μm horizontally and 1μm vertically,which implies that the beam orbit must be stabilized to the sub-micrometer level.This results in stringent tolerance and quality control requirements for the series production of beam position monitor (BPM) pickups.In this study,analytical formulas were used and CST simulations were performed to analyze the effects of the mechanical tolerances of BPM pickups on beam position measurement.The results of electromagnetic?eld simulations revealed how various mechanical errors,such as button size and location accuracy,as well as the related button capacitance,exert different in?uences on the beam position measurement.The performance of an actual BPM pickup was measured,along with an assessment of the error on the beam position measurement.Additionally,a wake?eld analysis,including an investigation of trapped resonant modes and related thermal deformation,was conducted.展开更多
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the ba...The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.展开更多
To establish a nuclear resonant scattering beamline at the High Energy Photon Source(HEPS),it is essential to develop tools for detection and cleaning of parasitic bunches,for meeting the stringent demands on bunch pu...To establish a nuclear resonant scattering beamline at the High Energy Photon Source(HEPS),it is essential to develop tools for detection and cleaning of parasitic bunches,for meeting the stringent demands on bunch purity.To this end,a novel time-correlated single-photon counting system was implemented at the electron storage ring of the Beijing Electron–Positron Collider II(BEPCII).The purity deterioration process over a week-long operation was recorded by the system.In this study,the mechanism of impurity growth was analyzed by numerical methods and validated on measurements.The agreement between the experimental results and the cal-culation was fairly good.Two main sources of parasitic bunches,pre-accelerators and the Touschek scattering were confirmed.A bunch-cleaning technique,based on a sinu-soidal signal mixed with a pseudo-square wave,was also developed and implemented,and its capability to improve the bunch purity to the level of 10–7 was experimentally demonstrated.We present the experimental setup,princi-ple,and measurement results of a system for detection and cleaning of parasitic bunches.展开更多
BACKGROUND:Despite the fact that traditional Chinese medicine(TCM) has been developed and used to treat acute and urgent illness for many thousands of years.TCM has been widely perceived in western societies that TCM ...BACKGROUND:Despite the fact that traditional Chinese medicine(TCM) has been developed and used to treat acute and urgent illness for many thousands of years.TCM has been widely perceived in western societies that TCM may only be effective to treat chronic diseases.The aim of this article is to provide some scientific evidence regarding the application of TCM in emergency medicine and its future potential.METHODS:Multiple databases(PubMed,ProQuest,Academic Search Elite and Science Direct) were searched using the terms:Traditional Chinese Medicine/ Chinese Medicine,Emergency Medicine,China.In addition,three leading TCM Journals in China were searched via Oriprobe Information Services for relevant articles(published from 1990—2012).Particular attention was paid to those articles that are related to TCM treatments or combined medicine in dealing with intensive and critical care.RESULTS:TCM is a systematic traditional macro medicine.The clinical practice of TCM is guided by the TCM theoretical framework- a methodology founded thousands of years ago.As the methodologies between TCM and Biomedicine are significantly different,it provides an opportunity to combine two medicines,in order to achieve clinical efficacy.Nowadays,combined medicine has become a common clinical model particular in TCM hospitals in China.CONCLUSIONS:It is evident that TCM can provide some assistance in emergency although to combine them in practice is still its infant form and is mainly at TCM hospitals in China.The future effort could be put into TCM research,both in laboratories and clinics,with high quality designs,so that TCM could be better understood and then applied in emergency medicine.展开更多
As one of the most important mathematical methods, the Dempster-Shafer(D-S)evidence theory has been widely used in date fusion, risk assessment, target identification, knowledge reasoning,and other fields. This pape...As one of the most important mathematical methods, the Dempster-Shafer(D-S)evidence theory has been widely used in date fusion, risk assessment, target identification, knowledge reasoning,and other fields. This paper summarized the development and recent studies of the explanations of D-S model, evidence combination algorithms, and the improvement of the conflict during evidence combination, and also compared all explanation models,algorithms, improvements, and their applicable conditions. We are trying to provide a reference for future research and applications through this summarization.展开更多
Pyro-breaker is a fast-responding and high-reliable explosive-driven circuit breaker,which has been applied in several quench protection systems,such as International Thermonuclear Experimental Reactor and Experimenta...Pyro-breaker is a fast-responding and high-reliable explosive-driven circuit breaker,which has been applied in several quench protection systems,such as International Thermonuclear Experimental Reactor and Experimental Advanced Superconducting Tokamak.As an indispensable back-up switch,Pyro-breaker guarantees the reliability and safety of the system and avoids tremendous loss when quench happens.Electrical contact,a crucial part of an electrical device greatly determines the steady current capacity of a Pyro-breaker.However,due to the complexity of the model and the deficiency knowledge of the microstate of contact areas,an accurate calculation for contact resistance is difficult to acquire.A study of electrical contact in the design of a Pyro-breaker has been presented in this paper.An engineering calculation method is verified with experiments.Parameters are fitted for the presented model,which will be a significant theoretical basis for the future designing.展开更多
Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic eleme...Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.展开更多
High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural an...High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported A_(1g) and E_(8) modes, the rarely reported E_(u) mode(-83 cm^(-1) for TiTe_(2), and -185 cm^(-1)for TiS_(2)), and even the unexpected K mode(-85 cm^(-1)) of TiTe_(2). Most phonons harden with the decrease of temperature, except that the K mode of TiTe_(2) and the E_(u) and “A_(2u)/Sh” modes of TiS_(2) soften with the decrease of temperature. In addition, we also found phonon changes in TiSe_(2) that may be related to charge density wave phase transition. Our results on TiX_(2) phonons will help to understand their charge density wave and superconductivity.展开更多
Pattern synthesise of antenna arrays is usually complicated optimization problems,while evolutionary algorithms(EAs)are promising in solving these problems.This paper does not propose a new EA,but does construct a new...Pattern synthesise of antenna arrays is usually complicated optimization problems,while evolutionary algorithms(EAs)are promising in solving these problems.This paper does not propose a new EA,but does construct a new form of optimization problems.The new optimization formulation has two differences from the common ones.One is the objective function is the field error between the desired and the designed,not the usual amplitude error between the desired and the designed.This difference is beneficial to decrease complexity in some sense.The second difference is that the design variables are changed as phases of desired radiation field within shaped-region,instead of excitation parameters.This difference leads to the reduction of the number of design variables.A series of synthesis experiments including equally and unequally spaced linear arrays with different pattern shape requirements are applied,and the effectiveness and advantages of the proposed new optimization problems are validated.The results show that the proposing a new optimization formulation with less complexity is as significant as proposing a new algorithm.展开更多
The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an ...The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an extremely sensitive SERS biosensor,to selectively capture and rapidly detect S-protein expressed coronavirus,such as the current SARS-CoV-2 in the contaminated water,down to the single-virus level.Such a SERS sensor features extraordinary 106-fold virus enrichment originating from high-affinity of ACE2 with S protein as well as“virus-traps”composed of oblique gold nanoneedles,and 109-fold enhancement of Raman signals originating from multi-component SERS effects.Furthermore,the identification standard of virus signals is established by machine-learning and identification techniques,resulting in an especially low detection limit of 80 copies mL^(−1) for the simulated contaminated water by SARS-CoV-2 virus with complex circumstance as short as 5 min,which is of great significance for achieving real-time monitoring and early warning of coronavirus.Moreover,here-developed method can be used to establish the identification standard for future unknown coronavirus,and immediately enable extremely sensitive and rapid detection of novel virus.展开更多
BACKGROUND: Emergency departments (EDs) are critical to the management of acute illnessand injury, and the provision of health system access. However, EDs have become increasinglycongested due to increased demand, ...BACKGROUND: Emergency departments (EDs) are critical to the management of acute illnessand injury, and the provision of health system access. However, EDs have become increasinglycongested due to increased demand, increased complexity of care and blocked access to ongoingcare (access block). Congestion has clinical and organisational implications. This paper aims todescribe the factors that appear to infl uence demand for ED services, and their interrelationships asthe basis for further research into the role of private hospital EDs.DATA SOURCES: Multiple databases (PubMed, ProQuest, Academic Search Elite and ScienceDirect) and relevant journals were searched using terms related to EDs and emergency health needs.Literature pertaining to emergency department utilisation worldwide was identified, and articlesselected for further examination on the basis of their relevance and signifi cance to ED demand.RESULTS: Factors influencing ED demand can be categorized into those describing thehealth needs of the patients, those predisposing a patient to seeking help, and those relating topolicy factors such as provision of services and insurance status. This paper describes the factorsinfl uencing ED presentations, and proposes a novel conceptual map of their interrelationship.CONCLUSION: This review has explored the factors contributing to the growing demand forED care, the infl uence these factors have on ED demand, and their interrelationships depicted in theconceptual model.展开更多
Biological bipolar metaplasticities were successfully mimicked in two-dimensional(2D)MoS2 transistors via the implementation of two different MoS2 surface decorations,poly(vinyl alcohol)(PVA)and chitosan bio-polymers....Biological bipolar metaplasticities were successfully mimicked in two-dimensional(2D)MoS2 transistors via the implementation of two different MoS2 surface decorations,poly(vinyl alcohol)(PVA)and chitosan bio-polymers.Interestingly,the depressing metaplasticity was successfully mimicked when the PVA bio-polymer was used as the surface decoration layer,whereas the metaplasticity of long-term potentiation was realized when the chitosan bio-polymer was taken as the surface decoration layer.Furthermore,the electronic band structures of the 2D MoS2 devices with different surface decorations were further investigated using first-principles calculations for understanding the underlying mechanisms of such bipolar metaplasticities.These results will deepen our understanding of metaplasticity,and have great potential in neuromorphic computing applications.展开更多
We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nan...We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.展开更多
A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs ...A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.展开更多
The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is...The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.展开更多
基金supported by NSF of China (Grant No. 61775241)partly by the Innovation-driven Project (Grant No. 2017CX019)the funding support from the Australian Research Council (ARC Discovery Projects, DP180102976)
文摘With a large number of researches being conducted on two?dimen?sional(2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that pro?vides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high?quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of di erent types of 2D heterostruc?tures, followed by the discussions on present challenges and perspectives of further investigations.
基金This research is supported by National Natural Science Foundation of China(Nos.52075557,51805553)Natural Science Foundation of Hunan Province(No.2021JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(No.2021RC3011)Open access funding provided by Shanghai Jiao Tong University
文摘Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.
基金supported by National Natural Science Foundation of China(3210197532022066+7 种基金31871825)National Key Research&Development Program of China(2021YFD2100104)Modern Agricultural Technical Foundation of China(CARS-42-25)Zhejiang Province Natural Science Foundation(LQ22C200017)China Postdoctoral Foundation(2020M6818062021T140348)Science and Technology Programs of Ningbo(202003N4130202002N3067)。
文摘To investigate the spoilage characteristics of Jinhua ham,sensory scores,volatile compounds,biogenic amine,physicochemical parameters and microbial counts were evaluated between normal and spoiled hams.The results showed that off-odors of spoiled hams were dominated by rancid,sour,sulfide and ammonia odors derived from these compounds including butanoic acid,methanethiol and dimethyl disulfide.Total content of biogenic amine in spoiled hams was significantly higher(more than 10-fold)compared with normal hams,and putrescine,cadaverine and histamine were the key components of biogenic amine of spoiled hams.Lower salt content,and higher moisture,TVB-N and thiobarbituric acid reactive substances(TBARS)values were observed in spoiled hams compared with normal hams.The populations of Enterobacteriaceae and Enterococcus of spoiled hams were obviously higher than that of normal hams.High moisture and low salt content caused the abnormal growth of Enterobacteriaceae and Enterococcus in spoiled hams,which contributed to the spoilage of Jinhua ham.
基金supported by the Youth Innovation Promotion Association CAS (Nos. 2019013 and Y202005)the National Natural Science Foundation of China (No. 11975254)
文摘At the High Energy Photon Source (HEPS),a high orbital stability of typically 10% of the beam size and angular divergence must be achieved.The beam size at the insertion devices is 10μm horizontally and 1μm vertically,which implies that the beam orbit must be stabilized to the sub-micrometer level.This results in stringent tolerance and quality control requirements for the series production of beam position monitor (BPM) pickups.In this study,analytical formulas were used and CST simulations were performed to analyze the effects of the mechanical tolerances of BPM pickups on beam position measurement.The results of electromagnetic?eld simulations revealed how various mechanical errors,such as button size and location accuracy,as well as the related button capacitance,exert different in?uences on the beam position measurement.The performance of an actual BPM pickup was measured,along with an assessment of the error on the beam position measurement.Additionally,a wake?eld analysis,including an investigation of trapped resonant modes and related thermal deformation,was conducted.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0204600)the National Natural Science Foundation of China(Grant No.51802352)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2018zzts355)
文摘The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.
基金This work was supported by the Foundation of Youth Innovation Promotion Association under contracts 2019013 and Y202005,CAS.
文摘To establish a nuclear resonant scattering beamline at the High Energy Photon Source(HEPS),it is essential to develop tools for detection and cleaning of parasitic bunches,for meeting the stringent demands on bunch purity.To this end,a novel time-correlated single-photon counting system was implemented at the electron storage ring of the Beijing Electron–Positron Collider II(BEPCII).The purity deterioration process over a week-long operation was recorded by the system.In this study,the mechanism of impurity growth was analyzed by numerical methods and validated on measurements.The agreement between the experimental results and the cal-culation was fairly good.Two main sources of parasitic bunches,pre-accelerators and the Touschek scattering were confirmed.A bunch-cleaning technique,based on a sinu-soidal signal mixed with a pseudo-square wave,was also developed and implemented,and its capability to improve the bunch purity to the level of 10–7 was experimentally demonstrated.We present the experimental setup,princi-ple,and measurement results of a system for detection and cleaning of parasitic bunches.
文摘BACKGROUND:Despite the fact that traditional Chinese medicine(TCM) has been developed and used to treat acute and urgent illness for many thousands of years.TCM has been widely perceived in western societies that TCM may only be effective to treat chronic diseases.The aim of this article is to provide some scientific evidence regarding the application of TCM in emergency medicine and its future potential.METHODS:Multiple databases(PubMed,ProQuest,Academic Search Elite and Science Direct) were searched using the terms:Traditional Chinese Medicine/ Chinese Medicine,Emergency Medicine,China.In addition,three leading TCM Journals in China were searched via Oriprobe Information Services for relevant articles(published from 1990—2012).Particular attention was paid to those articles that are related to TCM treatments or combined medicine in dealing with intensive and critical care.RESULTS:TCM is a systematic traditional macro medicine.The clinical practice of TCM is guided by the TCM theoretical framework- a methodology founded thousands of years ago.As the methodologies between TCM and Biomedicine are significantly different,it provides an opportunity to combine two medicines,in order to achieve clinical efficacy.Nowadays,combined medicine has become a common clinical model particular in TCM hospitals in China.CONCLUSIONS:It is evident that TCM can provide some assistance in emergency although to combine them in practice is still its infant form and is mainly at TCM hospitals in China.The future effort could be put into TCM research,both in laboratories and clinics,with high quality designs,so that TCM could be better understood and then applied in emergency medicine.
基金supported by the Special Project in Humanities and Social Sciences by the Ministry of Education of China(Cultivation of Engineering and Technological Talents)under Grant No.13JDGC002
文摘As one of the most important mathematical methods, the Dempster-Shafer(D-S)evidence theory has been widely used in date fusion, risk assessment, target identification, knowledge reasoning,and other fields. This paper summarized the development and recent studies of the explanations of D-S model, evidence combination algorithms, and the improvement of the conflict during evidence combination, and also compared all explanation models,algorithms, improvements, and their applicable conditions. We are trying to provide a reference for future research and applications through this summarization.
文摘Pyro-breaker is a fast-responding and high-reliable explosive-driven circuit breaker,which has been applied in several quench protection systems,such as International Thermonuclear Experimental Reactor and Experimental Advanced Superconducting Tokamak.As an indispensable back-up switch,Pyro-breaker guarantees the reliability and safety of the system and avoids tremendous loss when quench happens.Electrical contact,a crucial part of an electrical device greatly determines the steady current capacity of a Pyro-breaker.However,due to the complexity of the model and the deficiency knowledge of the microstate of contact areas,an accurate calculation for contact resistance is difficult to acquire.A study of electrical contact in the design of a Pyro-breaker has been presented in this paper.An engineering calculation method is verified with experiments.Parameters are fitted for the presented model,which will be a significant theoretical basis for the future designing.
基金financial support from the National Natural Science Foundation of China(Nos.61874141,11904239)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40709,2021JJ20080,2022JJ20080)+2 种基金Postgraduate Innovative Project of Central South University(Grant No.2021zzts0056)Open Sharing Found for the Large-scale Instruments and Equipment of Central South Universitysupported in part by the High Performance Computing Center of Central South University。
文摘Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and U1930116)the Innovation-driven Plan in Central South University (Grant No. 2016CXS032)。
文摘High-quality large 1T phase of TiX_(2)(X = Te, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported A_(1g) and E_(8) modes, the rarely reported E_(u) mode(-83 cm^(-1) for TiTe_(2), and -185 cm^(-1)for TiS_(2)), and even the unexpected K mode(-85 cm^(-1)) of TiTe_(2). Most phonons harden with the decrease of temperature, except that the K mode of TiTe_(2) and the E_(u) and “A_(2u)/Sh” modes of TiS_(2) soften with the decrease of temperature. In addition, we also found phonon changes in TiSe_(2) that may be related to charge density wave phase transition. Our results on TiX_(2) phonons will help to understand their charge density wave and superconductivity.
基金Major Project for New Generation of AI under Grant 2018AAA0100400in part by Scientific Research Fund of Hunan Provincial Education Department of China under Grant 21A0350,21C0439+4 种基金in part by the National Natural Science Foundation of China under Grant 61673355in part by the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)under Grant CUGGC02in part by the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010in part by the high-performance computing platform of the China University of Geosciencesin part by the 111 projectunder Grant B17040.
文摘Pattern synthesise of antenna arrays is usually complicated optimization problems,while evolutionary algorithms(EAs)are promising in solving these problems.This paper does not propose a new EA,but does construct a new form of optimization problems.The new optimization formulation has two differences from the common ones.One is the objective function is the field error between the desired and the designed,not the usual amplitude error between the desired and the designed.This difference is beneficial to decrease complexity in some sense.The second difference is that the design variables are changed as phases of desired radiation field within shaped-region,instead of excitation parameters.This difference leads to the reduction of the number of design variables.A series of synthesis experiments including equally and unequally spaced linear arrays with different pattern shape requirements are applied,and the effectiveness and advantages of the proposed new optimization problems are validated.The results show that the proposing a new optimization formulation with less complexity is as significant as proposing a new algorithm.
基金the National Natural Science Foundation of China(No.51471182)this work is also supported by Shanghai international science and Technology Cooperation Fund(No.17520711700)the National Key Research and Development Project(No.2017YFB0310600).
文摘The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an extremely sensitive SERS biosensor,to selectively capture and rapidly detect S-protein expressed coronavirus,such as the current SARS-CoV-2 in the contaminated water,down to the single-virus level.Such a SERS sensor features extraordinary 106-fold virus enrichment originating from high-affinity of ACE2 with S protein as well as“virus-traps”composed of oblique gold nanoneedles,and 109-fold enhancement of Raman signals originating from multi-component SERS effects.Furthermore,the identification standard of virus signals is established by machine-learning and identification techniques,resulting in an especially low detection limit of 80 copies mL^(−1) for the simulated contaminated water by SARS-CoV-2 virus with complex circumstance as short as 5 min,which is of great significance for achieving real-time monitoring and early warning of coronavirus.Moreover,here-developed method can be used to establish the identification standard for future unknown coronavirus,and immediately enable extremely sensitive and rapid detection of novel virus.
文摘BACKGROUND: Emergency departments (EDs) are critical to the management of acute illnessand injury, and the provision of health system access. However, EDs have become increasinglycongested due to increased demand, increased complexity of care and blocked access to ongoingcare (access block). Congestion has clinical and organisational implications. This paper aims todescribe the factors that appear to infl uence demand for ED services, and their interrelationships asthe basis for further research into the role of private hospital EDs.DATA SOURCES: Multiple databases (PubMed, ProQuest, Academic Search Elite and ScienceDirect) and relevant journals were searched using terms related to EDs and emergency health needs.Literature pertaining to emergency department utilisation worldwide was identified, and articlesselected for further examination on the basis of their relevance and signifi cance to ED demand.RESULTS: Factors influencing ED demand can be categorized into those describing thehealth needs of the patients, those predisposing a patient to seeking help, and those relating topolicy factors such as provision of services and insurance status. This paper describes the factorsinfl uencing ED presentations, and proposes a novel conceptual map of their interrelationship.CONCLUSION: This review has explored the factors contributing to the growing demand forED care, the infl uence these factors have on ED demand, and their interrelationships depicted in theconceptual model.
基金Supported by the Central South University Research Fund for Innovation-Driven Program(Grant No.2019CX024)the Natural Science Foundation of Hunan Province(Grant No.2018JJ3652)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2018M632985 and 2018T110839)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2018zzts333).
文摘Biological bipolar metaplasticities were successfully mimicked in two-dimensional(2D)MoS2 transistors via the implementation of two different MoS2 surface decorations,poly(vinyl alcohol)(PVA)and chitosan bio-polymers.Interestingly,the depressing metaplasticity was successfully mimicked when the PVA bio-polymer was used as the surface decoration layer,whereas the metaplasticity of long-term potentiation was realized when the chitosan bio-polymer was taken as the surface decoration layer.Furthermore,the electronic band structures of the 2D MoS2 devices with different surface decorations were further investigated using first-principles calculations for understanding the underlying mechanisms of such bipolar metaplasticities.These results will deepen our understanding of metaplasticity,and have great potential in neuromorphic computing applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11704416)the Hunan Provincial Natural Science Foundation,China(Grant No.2017JJ3408)
文摘We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.
基金supported by the National 863 Projects under Grant No. 2007AA03Z415.
文摘A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0702702,2019YFA0704904,2018YFA0305704,2017YFA0206300,2017YFA0303601,and 2016YFB0700903)the National Natural Science Foundation of China(Grant Nos.U1832219,51531008,51771223,51590880,51971240,11674378,11934016,and 11921004)the Key Program and Strategic Priority Research Program(B)of the Chinese Academy of Sciences。
文摘The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.