期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries
1
作者 Yicheng Lin Shaohua Luo +5 位作者 Pengyu Li jun cong Wei Zhao Lixiong Qian Qi Sun Shengxue Yan 《Journal of Energy Chemistry》 2025年第2期713-722,I0015,共11页
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ... Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs. 展开更多
关键词 Layered oxide cathodes Potassium-ion batteries Robust M-O bonds Low-cost Jahn-Teller effect
在线阅读 下载PDF
The mystic role of high-entropy designs in rechargeable metal-ion batteries:A review
2
作者 Yicheng Lin Shaohua Luo +5 位作者 Wei Zhao Qi Sun jun cong Pengwei Li Pengyu Li Shengxue Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期441-471,共31页
Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode material... Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode materials and electrolytes are key parts of batteries, exhibiting critical influence on the reversible capacity and span life of the metal-ion battery. Nonetheless, researchers commonly express concerns regarding the stability of both electrodes and electrolytes. Given its commendable stability attributes,high-entropy materials have garnered widespread acclaim and have been applied in many fields since their inception, notably in energy storage. However, while certain high-entropy designs have achieved substantial breakthroughs, some have failed to meet anticipated outcomes within the high energy density energy storage materials. Moreover, there is a lack of comprehensive summary research on the corresponding mechanisms and design principles of high-entropy designs. This review examines the current high-entropy designs for cathodes, anodes, and electrolytes, aiming to summarize the design principle,potential mechanisms, and electrochemical performance. We focus on their structural characteristics,interface characteristics, and prospective development trends. At last, we provide a fair evaluation along-side succinct development suggestions. 展开更多
关键词 High-entropy materials Energy storage materials ELECTRODES Electrolytes Interface
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部