A key physics issue for achieving steady-state high-performance plasmas on EAST tokamak is to decrease beam-ion losses to improve plasma confinement during neutral beam injections(NBIs).To decrease the beam losses,pre...A key physics issue for achieving steady-state high-performance plasmas on EAST tokamak is to decrease beam-ion losses to improve plasma confinement during neutral beam injections(NBIs).To decrease the beam losses,previous counter-I_(p)NBI injections are upgraded to co-I_(p)injections.Analysis shows that due to the reversed direction of drift across the flux surfaces caused by the pitch angle,the beam prompt loss fraction decreases from about 49%to 3%after the upgrade.Moreover,because of the change of entire beam path,beam shine-through(ST)loss fraction for counter-I_(p)tangential and counter-I_(p)perpendicular injections is reversed to co-I_(p)tangential and co-I_(p)perpendicular injections,respectively.Due to the change in the initial trapped-confined beam ion fraction caused by the peaked pitch profiles,the losses induced by toroidal ripple field are also reversed after the upgrade.To further improve the beam-ion confinement under the present NBI layout,the amplitudes of toroidal field are increased from 1.75 to 2.20 T.Result shows that,due to the smaller orbit width and peaked pitch angle profile,the beam prompt loss power is lower with higher toroidal field.Due to the synergy of higher initial trapped-confined beam ion fraction and narrower Goldston-White-Boozer(GWB)boundary,the loss induced by ripple diffusion is higher with higher toroidal field.The combined effect of beam ST loss,prompt loss and ripple loss,contributes to the increase in beam ion density.The decrease in beam loss power enhances beam heating efficiency,especially the fraction of beam heating ions.Finally,comparison between simulation and measurement by^(235)U fission chamber(FC)indicates that the increase in neutron rate is mainly contributed by improvement of beam-ion confinement.This study can provide potential support for beam operation and high-T_(i)experiment on EAST tokamak.展开更多
In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall ...In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall conditioning,long-lasting fully noninductive current and divertor heat/particle flux.The fully noninductive current is driven by pure radio frequency(RF)waves with a lower hybrid current drive power of 2.5 MW and electron cyclotron resonance heating of 1.4 MW.This is an excellent experimental platform on the timescale of hundreds of seconds for studying multiscale instabilities,electron-dominant transport and particle recycling(plasma-wall interactions)under weak collisionality.展开更多
Branch phenotypic traits determine tree crown architecture,which in turn governs leaf display,light interception,and biomass production.Sylleptic and proleptic branches are the obviously different branch phenotypes in...Branch phenotypic traits determine tree crown architecture,which in turn governs leaf display,light interception,and biomass production.Sylleptic and proleptic branches are the obviously different branch phenotypes in the poplar crown.Many studies have focused on the influence of sylleptic branch numbers(SBN)on biomass production,but the research on the influence of proleptic branch phenotypes was only a few.To explore the relationship between proleptic branch traits and biomass generation production in a high-density poplar plantation,we investigated the branch phenotypic traits of three poplar genotypes,all of which have high survival rates in forests(>95%)and significantly different crown architecture and biomass performance in the high-density plantations(1667 stems ha−1).The plantation site was established in 2007.A terrestrial laser scanner was used to measure branch characteristics such as length,angle of origin and termination,and azi-muth angle.A hierarchical cluster analysis performed on branch characteristics showed that SBN,crown depth,and proleptic branch curvature(PBC)were clustered with bio-mass production and leaf area index(LAI).Among all of the monitored traits,PBC played the second most important role in biomass production after SBN and was significantly correlated with SBN,LAI,and biomass production.The positive correlation between PBC and SBN indicated that a larger PBC was associated with more sylleptic branches within the monitored genotypes planted in the high-density plantation,providing greater leaf area and biomass produc-tion.The results of this study will improve the identification of high-production poplar varieties for cultivation in high-density plantations for biofuel production.展开更多
2D fast-ion velocity-space distributions have been reconstructed from two-view fast-ion D-alpha(FIDA)measurements on experimental advanced superconducting tokamak(EAST).To make up for the sparse data and incomplete ve...2D fast-ion velocity-space distributions have been reconstructed from two-view fast-ion D-alpha(FIDA)measurements on experimental advanced superconducting tokamak(EAST).To make up for the sparse data and incomplete velocity-space coverage with the dual-view,we use nonnegativity and null-measurements as prior information to reconstruct the velocity distribution in experiments with co-and counter-current neutral beam injection.An improved reconstructed fast-ion distribution is achieved by combining the existing O-and B-port FIDA measurements with the proposed A-port FIDA view.To further improve the reliability of FIDA-based reconstructions on EAST,based on real multi-view FIDA measurements on EAST in the near future,various bases will be studied further.展开更多
This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simula...This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.展开更多
Based on neon gas puffing, an active feedback control of H-mod plasma divertor detachment experiment was successfully operated on the EAST tokamak. During the feedback control discharge, the plasma was detached by puf...Based on neon gas puffing, an active feedback control of H-mod plasma divertor detachment experiment was successfully operated on the EAST tokamak. During the feedback control discharge, the plasma was detached by puffing neon gas and the strike point splitting phenomenon on divertor target was also clearly observed by divertor probes diagnostic.In boundary region, many neutral particle processes(atom and molecule) were happened and accompanied by their emission spectra under the detachment discharge. By studying these emission spectra, it is helpful for us to understand the role of atoms and molecules in boundary recycling, which is important for studying the physical mechanism of divertor detachment. For the Fulcher-α system(d(3 p)3Πu±→ a(2 s)3Σg+), D2 emission spectra in the range from 601 nm to 606 nm were observed, identified and fitted in the detachment experiment for the first time on the EAST, and the spectra in the Q(0–0) band(d3Πu-→ a(2 s)3Σg+) in the Q branch of the Fulcher-α system were used for detailed analysis to acquire the boundary region temperature Te(below 5eV), which could not be provided very well by other diagnostics on the EAST. An electronic version deuterium molecular spectral line database was established to identify the spectral lines and a multi-peak fitting program was developed to fit and analyze the observed spectra.展开更多
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th...The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.展开更多
In 2015 campaign,deuterium atomic emission spectra(D_(α))under the Zeeman effect in boundary region had been measured by a high resolution optical spectroscopic multichannel analysis(OSMA)system based on passive spec...In 2015 campaign,deuterium atomic emission spectra(D_(α))under the Zeeman effect in boundary region had been measured by a high resolution optical spectroscopic multichannel analysis(OSMA)system based on passive spectroscopy during the deuterium plasma discharge on EAST tokamak,and part of the works about the Zeeman effect on D_(α)spectra had already been done.However,the asymmetric phenomena of D_(α)emission spectra under the Zeeman effect were observed in process of analyzing the spectral data.To understand the asymmetric phenomena and acquire the useful local plasma information,an algorithm was proposed and used to analyze the asymmetry of the emission spectra under the Zeeman effect with all polarization components(πand±σ).In the algorithm,the neutral atoms were considered to follow the Maxwell distribution on EAST,and I+σ=I-σwas considered and set.Because of the line-averaged spectra along the viewing chord,the emission spectra were considered from two different regions:low-field side(LFS)and high-field side(HFS).Each spectral line was classified into three energy categories(the cold,warm,and hot)based on different atomic production processes in boundary recycling.The viewing angleθ(between the magnetic field B and the viewing chord),magnetic field B at two spectral emission positions(HFS and LFS)and the Doppler shift of all three energy categories of each spectral line were all considered in the algorithm.The effect of instrument function was also included here.The information of the boundary plasma were acquired,the reason for the asymmetric phenomena was discussed,and the boundary recycling during the discharge were studied in the paper.Based on fitting a statistical data of acquired fitting results,an important conclusion was acquired that the ratio of the spectral line intensity in HFS and LFS was proportional to the square of that of the corresponding magnetic field.展开更多
The first experimental investigation of the tungsten behavior in ELMy H-mode plasmas with co-/counter neutral beam injection(NBI)and unfavor-able/favorable B t was performed on EAST.Tungsten was found to accumulate ea...The first experimental investigation of the tungsten behavior in ELMy H-mode plasmas with co-/counter neutral beam injection(NBI)and unfavor-able/favorable B t was performed on EAST.Tungsten was found to accumulate easily in ELMy H-mode plasma with co-NBI heating and unfavorable B t.Thus,in this case the tungsten concentration can exceed 10^(-4),resulting in degradation of the plasma confinement and periodic H–L transitions.To reduce the tungsten concentration in steady-state type-I ELMy H-mode operation,counter-NBI is applied to modify the density and temperature and brake the plasma toroidal rotation.The applied counter-NBI decreases the PHZ+E_(r) inward pinch velocity and rever-ses the direction of neoclassical inward convection,thus decreasing the tungsten concentration from-7×10^(-5) to-2×10^(-5) in type-I ELMy H-mode plasma with favorable B_(t).A comparison of the effects of different B_(t) directions on the tungsten behavior also shows that favor-able B_(t) is beneficial for reducing the tungsten concentration in the core plasma.These results imply that counter-NBI with favorable B_(t) can effectively prevent tungsten accu-mulation and expand the operating window for exploring steady-state type-I ELMy H-mode operation of EAST.展开更多
The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokama...The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokamak.The scan of radial locations shows that trapped electron mode(TEM)dominates around the core while the ion temperature gradient mode(ITG)simultaneously dominates outside.The maximum growth rate of TEM appears aroundρ=0.24,where the maximum electron temperature gradient R/LTelocates,ρis the normalized poloidal flux.Effects of the parameters on the transition between TEM and ITG instability are studied atρ=0.24.It is found that TEM dominates in the scanning with individually changing R/LTe from 2.50 to 25.02 or the density gradient R/L_(n)from 1.38 to 13.76.Meanwhile,the electron-ion temperature ratio T_(e)/T_(i)is found to destabilize TEM,the effect of Teis more sensitive than that of T_(i).The dominant instability diagrams in the(R/L_(Te),R/L_(Ti))plane at different T_(e)/T_(i)and R/Lnare numerically obtained,which clearly show the parameter range of the dominant TEM or dominant ITG instability region.It is found that the dominant TEM region becomes narrower in the plane by decreasing R/L_(n)when T_(e)/T_(i)>0.5.展开更多
The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power abso...The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power absorption and fast ion stored energy are systematically calculated using the TRANSP code,through the investigation of global parameters including plasma current,line averaged density and beam energy.Results have shown that scaling laws for the NBI absorption coefficient and fast ion energy rate are obtained through statistical analysis.A comparison of the confinement improvement factor H98y2 with these new scaling laws against those assuming fixed coefficients is given.展开更多
Background The neuroimaging mechanism of major depressive episodes with mixed features(MMF)is not clear.Aims This study aimed to investigate the functional connectivity of the default mode network(DMN)subsystems among...Background The neuroimaging mechanism of major depressive episodes with mixed features(MMF)is not clear.Aims This study aimed to investigate the functional connectivity of the default mode network(DMN)subsystems among patients with MMF and patients with major depressive disorder without mixed features(MDD_(noMF)).Methods This study recruited 47 patients with MDD_(noMF)and 27 patients with MMF from Beijing Anding Hospital,Capital Medical University,between April 2021 and June 2022.Forty-five healthy controls(HCs)were recruited.All subjects underwent resting-state functional magnetic resonance imaging scanning and clinical assessments.Intranetwork and internetwork functional connectity were computed in the DMN core subsystem,dorsal medial prefrontal cortex(dMPFC)subsystem and medial temporal lobe(MTL)subsystem.Analysis of covariance method was performed to compare the intranetwork and internetwork functional connectivity in the DMN subsystems among the MDD_(noMP)MMF and HC groups.Results The functional connectivity within the DMN core(F=6.32,P_(FDR)=0.008)and MTL subsystems(F=4.45,P_(FDR)=0.021)showed significant differences among the MDD_(noMP) MMF and HC groups.Compared with the HC group,the patients with MDD_(noMF) and MMF had increased functional connectivity within the DMN MTL subsystem,and the patients with MMF also showed increased functional connectivity within the DMN core subsystem.Meanwhile,compared with the MDD_(noMP) the patients with MMF had increased functional connectivity within the DMN core subsystem(mean difference(MDD_(noMF)-MMF)=-0.08,SE=0.04,p=0.048).However,no significant differences were found within the DMN dMPFC subsystem and all the internetwork functional connectivity.Conclusions Our results indicated abnormal functional connectivity patterns of DMN subsystems in patients with MMF,findings potentially beneficial to deepen our understanding of MMF's neural basis.展开更多
基金supported by the National Key R&D Program of China(No.2019YFE03020004)National Natural Science Foundation of China(Nos.12175272 and 12347186)+3 种基金Anhui Provincial Natural Science Foundation(No.2008085J04)Anhui Provincial Key R&D Program(No.202104b11020003)Collaborative Innovation Program of Hefei Science Center,CAS(No.YZJJ2023QN17)State Key Laboratory of Advanced Electromagnetic Technology(No.AET 2024KF010)。
文摘A key physics issue for achieving steady-state high-performance plasmas on EAST tokamak is to decrease beam-ion losses to improve plasma confinement during neutral beam injections(NBIs).To decrease the beam losses,previous counter-I_(p)NBI injections are upgraded to co-I_(p)injections.Analysis shows that due to the reversed direction of drift across the flux surfaces caused by the pitch angle,the beam prompt loss fraction decreases from about 49%to 3%after the upgrade.Moreover,because of the change of entire beam path,beam shine-through(ST)loss fraction for counter-I_(p)tangential and counter-I_(p)perpendicular injections is reversed to co-I_(p)tangential and co-I_(p)perpendicular injections,respectively.Due to the change in the initial trapped-confined beam ion fraction caused by the peaked pitch profiles,the losses induced by toroidal ripple field are also reversed after the upgrade.To further improve the beam-ion confinement under the present NBI layout,the amplitudes of toroidal field are increased from 1.75 to 2.20 T.Result shows that,due to the smaller orbit width and peaked pitch angle profile,the beam prompt loss power is lower with higher toroidal field.Due to the synergy of higher initial trapped-confined beam ion fraction and narrower Goldston-White-Boozer(GWB)boundary,the loss induced by ripple diffusion is higher with higher toroidal field.The combined effect of beam ST loss,prompt loss and ripple loss,contributes to the increase in beam ion density.The decrease in beam loss power enhances beam heating efficiency,especially the fraction of beam heating ions.Finally,comparison between simulation and measurement by^(235)U fission chamber(FC)indicates that the increase in neutron rate is mainly contributed by improvement of beam-ion confinement.This study can provide potential support for beam operation and high-T_(i)experiment on EAST tokamak.
基金the National Key R&D Program of China(No.2022YFE03010003)National Natural Science Foundation of China(No.12275309).
文摘In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall conditioning,long-lasting fully noninductive current and divertor heat/particle flux.The fully noninductive current is driven by pure radio frequency(RF)waves with a lower hybrid current drive power of 2.5 MW and electron cyclotron resonance heating of 1.4 MW.This is an excellent experimental platform on the timescale of hundreds of seconds for studying multiscale instabilities,electron-dominant transport and particle recycling(plasma-wall interactions)under weak collisionality.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFD0600401)the Basic Research Fund of RIF(Grant No.CAFYBB2017ZA001-3)the 12th 5-Year National Science and Technology Support Program(2012BAD01B03).
文摘Branch phenotypic traits determine tree crown architecture,which in turn governs leaf display,light interception,and biomass production.Sylleptic and proleptic branches are the obviously different branch phenotypes in the poplar crown.Many studies have focused on the influence of sylleptic branch numbers(SBN)on biomass production,but the research on the influence of proleptic branch phenotypes was only a few.To explore the relationship between proleptic branch traits and biomass generation production in a high-density poplar plantation,we investigated the branch phenotypic traits of three poplar genotypes,all of which have high survival rates in forests(>95%)and significantly different crown architecture and biomass performance in the high-density plantations(1667 stems ha−1).The plantation site was established in 2007.A terrestrial laser scanner was used to measure branch characteristics such as length,angle of origin and termination,and azi-muth angle.A hierarchical cluster analysis performed on branch characteristics showed that SBN,crown depth,and proleptic branch curvature(PBC)were clustered with bio-mass production and leaf area index(LAI).Among all of the monitored traits,PBC played the second most important role in biomass production after SBN and was significantly correlated with SBN,LAI,and biomass production.The positive correlation between PBC and SBN indicated that a larger PBC was associated with more sylleptic branches within the monitored genotypes planted in the high-density plantation,providing greater leaf area and biomass produc-tion.The results of this study will improve the identification of high-production poplar varieties for cultivation in high-density plantations for biofuel production.
基金supported by National Natural Science Foundation of China(No.11975276)Anhui Provincial Natural Science Foundation(No.2008085J04)+3 种基金Anhui Provincial Key R&D Programmes(No.202104b11020003)the National Key Research and Development Program of China(No.2019YFE03020004)the Excellence Program of Hefei Science Center CAS(No.2021HSC-UE015)。
文摘2D fast-ion velocity-space distributions have been reconstructed from two-view fast-ion D-alpha(FIDA)measurements on experimental advanced superconducting tokamak(EAST).To make up for the sparse data and incomplete velocity-space coverage with the dual-view,we use nonnegativity and null-measurements as prior information to reconstruct the velocity distribution in experiments with co-and counter-current neutral beam injection.An improved reconstructed fast-ion distribution is achieved by combining the existing O-and B-port FIDA measurements with the proposed A-port FIDA view.To further improve the reliability of FIDA-based reconstructions on EAST,based on real multi-view FIDA measurements on EAST in the near future,various bases will be studied further.
基金Supported by the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP015)the National Natural Science Foundation of China (Grant Nos.11875290,1170529,11875253,and 11975276)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3420000004)the Anhui Provincial Natural Science Foundation (Grant No.2008085J04)the National Key Research and Development Program of China (Grant No.2019YFE03020004)。
文摘This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.
基金Project supported by the National Natural Science Foundation of China(Grant No.11805234)
文摘Based on neon gas puffing, an active feedback control of H-mod plasma divertor detachment experiment was successfully operated on the EAST tokamak. During the feedback control discharge, the plasma was detached by puffing neon gas and the strike point splitting phenomenon on divertor target was also clearly observed by divertor probes diagnostic.In boundary region, many neutral particle processes(atom and molecule) were happened and accompanied by their emission spectra under the detachment discharge. By studying these emission spectra, it is helpful for us to understand the role of atoms and molecules in boundary recycling, which is important for studying the physical mechanism of divertor detachment. For the Fulcher-α system(d(3 p)3Πu±→ a(2 s)3Σg+), D2 emission spectra in the range from 601 nm to 606 nm were observed, identified and fitted in the detachment experiment for the first time on the EAST, and the spectra in the Q(0–0) band(d3Πu-→ a(2 s)3Σg+) in the Q branch of the Fulcher-α system were used for detailed analysis to acquire the boundary region temperature Te(below 5eV), which could not be provided very well by other diagnostics on the EAST. An electronic version deuterium molecular spectral line database was established to identify the spectral lines and a multi-peak fitting program was developed to fit and analyze the observed spectra.
基金Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7023)。
文摘The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.
基金Project supported by the National Natural Science Foundation of China(Grant No.11805234)。
文摘In 2015 campaign,deuterium atomic emission spectra(D_(α))under the Zeeman effect in boundary region had been measured by a high resolution optical spectroscopic multichannel analysis(OSMA)system based on passive spectroscopy during the deuterium plasma discharge on EAST tokamak,and part of the works about the Zeeman effect on D_(α)spectra had already been done.However,the asymmetric phenomena of D_(α)emission spectra under the Zeeman effect were observed in process of analyzing the spectral data.To understand the asymmetric phenomena and acquire the useful local plasma information,an algorithm was proposed and used to analyze the asymmetry of the emission spectra under the Zeeman effect with all polarization components(πand±σ).In the algorithm,the neutral atoms were considered to follow the Maxwell distribution on EAST,and I+σ=I-σwas considered and set.Because of the line-averaged spectra along the viewing chord,the emission spectra were considered from two different regions:low-field side(LFS)and high-field side(HFS).Each spectral line was classified into three energy categories(the cold,warm,and hot)based on different atomic production processes in boundary recycling.The viewing angleθ(between the magnetic field B and the viewing chord),magnetic field B at two spectral emission positions(HFS and LFS)and the Doppler shift of all three energy categories of each spectral line were all considered in the algorithm.The effect of instrument function was also included here.The information of the boundary plasma were acquired,the reason for the asymmetric phenomena was discussed,and the boundary recycling during the discharge were studied in the paper.Based on fitting a statistical data of acquired fitting results,an important conclusion was acquired that the ratio of the spectral line intensity in HFS and LFS was proportional to the square of that of the corresponding magnetic field.
基金supported by the National Key R&D Program of China(Nos.2018YFE0311100 and 2017YFE0301205)National Natural Science Foundation of China(Nos.11905146,11775269,11575244,11575249,11575235,11422546,11805133,and U19A20113)+4 种基金Users with Excellence Program of Hefei Science Center,CAS(No.2019HSC-UE014)National Magnetic Confinement Fusion Science Program of China(Nos.2015GB110005,2015GB103003,2015GB101002,and 2015GB103000)Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSWSLH001)CASHIPS Director’s Fund(No.BJPY2019A01)Shenzhen Clean Energy Research Institute.
文摘The first experimental investigation of the tungsten behavior in ELMy H-mode plasmas with co-/counter neutral beam injection(NBI)and unfavor-able/favorable B t was performed on EAST.Tungsten was found to accumulate easily in ELMy H-mode plasma with co-NBI heating and unfavorable B t.Thus,in this case the tungsten concentration can exceed 10^(-4),resulting in degradation of the plasma confinement and periodic H–L transitions.To reduce the tungsten concentration in steady-state type-I ELMy H-mode operation,counter-NBI is applied to modify the density and temperature and brake the plasma toroidal rotation.The applied counter-NBI decreases the PHZ+E_(r) inward pinch velocity and rever-ses the direction of neoclassical inward convection,thus decreasing the tungsten concentration from-7×10^(-5) to-2×10^(-5) in type-I ELMy H-mode plasma with favorable B_(t).A comparison of the effects of different B_(t) directions on the tungsten behavior also shows that favor-able B_(t) is beneficial for reducing the tungsten concentration in the core plasma.These results imply that counter-NBI with favorable B_(t) can effectively prevent tungsten accu-mulation and expand the operating window for exploring steady-state type-I ELMy H-mode operation of EAST.
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03060000,2019YFE03050000 and 2019YFE03020004)National Natural Science Foundation of China(Nos.12005063 and 11875131)+1 种基金Users with Excellence Program of Hefei Science Center CAS(Nos.2020HSC-UE011 and 2021HSC-UE015)Anhui Provincial Natural Science Foundation(No.2008085Jo4)。
文摘The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokamak.The scan of radial locations shows that trapped electron mode(TEM)dominates around the core while the ion temperature gradient mode(ITG)simultaneously dominates outside.The maximum growth rate of TEM appears aroundρ=0.24,where the maximum electron temperature gradient R/LTelocates,ρis the normalized poloidal flux.Effects of the parameters on the transition between TEM and ITG instability are studied atρ=0.24.It is found that TEM dominates in the scanning with individually changing R/LTe from 2.50 to 25.02 or the density gradient R/L_(n)from 1.38 to 13.76.Meanwhile,the electron-ion temperature ratio T_(e)/T_(i)is found to destabilize TEM,the effect of Teis more sensitive than that of T_(i).The dominant instability diagrams in the(R/L_(Te),R/L_(Ti))plane at different T_(e)/T_(i)and R/Lnare numerically obtained,which clearly show the parameter range of the dominant TEM or dominant ITG instability region.It is found that the dominant TEM region becomes narrower in the plane by decreasing R/L_(n)when T_(e)/T_(i)>0.5.
基金Numerical computations were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics,Chinese Academy of SciencesThe work is supported by National MCF Energy R&D Program of China(Nos.2018YFE0302100,2017YFE0301100)+1 种基金National Natural Science Foundation of China(Nos.11775262,11975274,11805237,11705239)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102000).
文摘The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power absorption and fast ion stored energy are systematically calculated using the TRANSP code,through the investigation of global parameters including plasma current,line averaged density and beam energy.Results have shown that scaling laws for the NBI absorption coefficient and fast ion energy rate are obtained through statistical analysis.A comparison of the confinement improvement factor H98y2 with these new scaling laws against those assuming fixed coefficients is given.
基金This study was supported by the National Natural Science Foundation of China(81901368,82171526 and 82071531)the Capital's Funds for Health Improvement and Research(CFH2020-4-2125)+1 种基金the Beijing Municipal Administration of Hospitals Incubating Programme(PX2018064 and PX2020072)Beijing Hospitals Authority Youth Programme(QMS20211901).
文摘Background The neuroimaging mechanism of major depressive episodes with mixed features(MMF)is not clear.Aims This study aimed to investigate the functional connectivity of the default mode network(DMN)subsystems among patients with MMF and patients with major depressive disorder without mixed features(MDD_(noMF)).Methods This study recruited 47 patients with MDD_(noMF)and 27 patients with MMF from Beijing Anding Hospital,Capital Medical University,between April 2021 and June 2022.Forty-five healthy controls(HCs)were recruited.All subjects underwent resting-state functional magnetic resonance imaging scanning and clinical assessments.Intranetwork and internetwork functional connectity were computed in the DMN core subsystem,dorsal medial prefrontal cortex(dMPFC)subsystem and medial temporal lobe(MTL)subsystem.Analysis of covariance method was performed to compare the intranetwork and internetwork functional connectivity in the DMN subsystems among the MDD_(noMP)MMF and HC groups.Results The functional connectivity within the DMN core(F=6.32,P_(FDR)=0.008)and MTL subsystems(F=4.45,P_(FDR)=0.021)showed significant differences among the MDD_(noMP) MMF and HC groups.Compared with the HC group,the patients with MDD_(noMF) and MMF had increased functional connectivity within the DMN MTL subsystem,and the patients with MMF also showed increased functional connectivity within the DMN core subsystem.Meanwhile,compared with the MDD_(noMP) the patients with MMF had increased functional connectivity within the DMN core subsystem(mean difference(MDD_(noMF)-MMF)=-0.08,SE=0.04,p=0.048).However,no significant differences were found within the DMN dMPFC subsystem and all the internetwork functional connectivity.Conclusions Our results indicated abnormal functional connectivity patterns of DMN subsystems in patients with MMF,findings potentially beneficial to deepen our understanding of MMF's neural basis.