期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS
1
作者 Li wang Kun CHENG jixiu wang 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1453-1484,共32页
In this paper,we study the multiplicity and concentration of positive solutions for the following fractional Kirchhoff-Choquard equation with magnetic fields:(aε^(2s)+bε^(4 s-3)[u]_(ε)^(2),A/ε)(-Δ)_(A/ε)^(s)u+V(... In this paper,we study the multiplicity and concentration of positive solutions for the following fractional Kirchhoff-Choquard equation with magnetic fields:(aε^(2s)+bε^(4 s-3)[u]_(ε)^(2),A/ε)(-Δ)_(A/ε)^(s)u+V(x)u=ε^(-α)(Iα*F(|u|^(2)))f(|u|^(2))u in R^(3).Hereε>0 is a small parameter,a,b>0 are constants,s E(0,1),(-Δ)As is the fractional magnetic Laplacian,A:R^(3)→R^(3) is a smooth magnetic potential,Iα=Γ(3-α/2)/2απ3/2Γ(α/2)·1/|x|^(α) is the Riesz potential,the potential V is a positive continuous function having a local minimum,and f:R→R is a C^(1) subcritical nonlinearity.Under some proper assumptions regarding V and f,we show the multiplicity and concentration of positive solutions with the topology of the set M:={x∈R^(3):V(x)=inf V}by applying the penalization method and LjusternikSchnirelmann theory for the above equation. 展开更多
关键词 Fractional Kirchhoff-Choquard problem penalization method Ljusternik-Schnirelmann theory variational methods
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部