A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c...A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.展开更多
A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit...A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit current density, opencircuit voltage, and conversion efficiency) of the IPV solar cell were calculated as functions of variable electron and hole photoemission cross sections. The presented results show that the electron and hole photoemission cross sections play critical roles in the IPV effect. When the electron photoemission cross section is 10^-20cm^2, the conversion efficiencyη of the IPV cell always has a negative gain(△η 0) if the IPV impurity is introduced. A large hole photoemission cross section can adversely impact IPV solar cell performance. The combination of a small hole photoemission cross section and a large electron photoemission cross section can achieve higher conversion efficiency for the IPV solar cell since a large electron photoemission cross section can enhance the necessary electron transition from the impurity level to the conduction band and a small hole photoemission cross section can reduce the needless sub-bandgap absorption. It is concluded that those impurities with small(large) hole photoemission cross section and large(small) electron photoemission cross section,whose energy levels are near the valence(or conduction) band edge, may be suitable for use in IPV solar cells. These results may help in judging whether or not an impurity is appropriate for use in IPV solar cells according to its electron and hole photoemission cross sections.展开更多
In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with lo...In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.展开更多
基金Project supported by the Jiangxi Provincial Key Research and Development Foundation,China(Grant No.2016BBH80043)the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China(Grant No.NJ20160032)the National Natural Science Foundation of China(Grant Nos.61741404,61464007,and 51561022)
文摘A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.61464007,61306084,11664025,and 51561022)the Postdoctoral Science Foundation of Jiangxi Province of China(Grant Nos.2014KY32,2013RC08,and 2015KY12)+1 种基金the Natural Science Foundation of Jiangxi Province of China(Grant Nos.20151BAB207055 and 20161BAB201012)the Postdoctoral Science Foundation of China(Grant No.2016M592115)
文摘A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit current density, opencircuit voltage, and conversion efficiency) of the IPV solar cell were calculated as functions of variable electron and hole photoemission cross sections. The presented results show that the electron and hole photoemission cross sections play critical roles in the IPV effect. When the electron photoemission cross section is 10^-20cm^2, the conversion efficiencyη of the IPV cell always has a negative gain(△η 0) if the IPV impurity is introduced. A large hole photoemission cross section can adversely impact IPV solar cell performance. The combination of a small hole photoemission cross section and a large electron photoemission cross section can achieve higher conversion efficiency for the IPV solar cell since a large electron photoemission cross section can enhance the necessary electron transition from the impurity level to the conduction band and a small hole photoemission cross section can reduce the needless sub-bandgap absorption. It is concluded that those impurities with small(large) hole photoemission cross section and large(small) electron photoemission cross section,whose energy levels are near the valence(or conduction) band edge, may be suitable for use in IPV solar cells. These results may help in judging whether or not an impurity is appropriate for use in IPV solar cells according to its electron and hole photoemission cross sections.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB1500403)the National Natural Science Foundation of China(Grant Nos.11964018,61741404,and 61464007)the Natural Science Foundation of Jiangxi Province of China(Grant No.20181BAB202027)
文摘In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.