期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost 被引量:4
1
作者 Haibin Huang Gangyu Tian +6 位作者 Lang Zhou jiren yuan Wolfgang R.Fahrner Wenbin Zhang Xingbing Li Wenhao Chen Renzhong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期520-525,共6页
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c... A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. 展开更多
关键词 silicon solar cell a-Si:H/c-Si heterojunction short-circuit current
在线阅读 下载PDF
Photoemission cross section:A critical parameter in the impurity photovoltaic effect
2
作者 jiren yuan Haibin Huang +4 位作者 Xinhua Deng Zhihao Yue Yuping He Naigen Zhou Lang Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期552-556,共5页
A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit... A numerical study has been conducted to explore the role of photoemission cross sections in the impurity photovoltaic(IPV) effect for silicon solar cells doped with indium. The photovoltaic parameters(short-circuit current density, opencircuit voltage, and conversion efficiency) of the IPV solar cell were calculated as functions of variable electron and hole photoemission cross sections. The presented results show that the electron and hole photoemission cross sections play critical roles in the IPV effect. When the electron photoemission cross section is 10^-20cm^2, the conversion efficiencyη of the IPV cell always has a negative gain(△η 0) if the IPV impurity is introduced. A large hole photoemission cross section can adversely impact IPV solar cell performance. The combination of a small hole photoemission cross section and a large electron photoemission cross section can achieve higher conversion efficiency for the IPV solar cell since a large electron photoemission cross section can enhance the necessary electron transition from the impurity level to the conduction band and a small hole photoemission cross section can reduce the needless sub-bandgap absorption. It is concluded that those impurities with small(large) hole photoemission cross section and large(small) electron photoemission cross section,whose energy levels are near the valence(or conduction) band edge, may be suitable for use in IPV solar cells. These results may help in judging whether or not an impurity is appropriate for use in IPV solar cells according to its electron and hole photoemission cross sections. 展开更多
关键词 solar cell impurity photovoltaic effect photoemission cross section conversion efficiency
在线阅读 下载PDF
Simulation of a-Si:H/c-Si heterojunction solar cells: From planar junction to local junction
3
作者 Haibin Huang Lang Zhou +1 位作者 jiren yuan Zhijue Quan 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期370-377,共8页
In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with lo... In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost. 展开更多
关键词 silicon solar cell a-Si:H/c-Si heterojunction short-circuit current local junction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部