期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revealing the Impact of Ferromagnetic Elements on Fe-Based Amorphous Alloy Properties via ab initio Molecular Dynamics Simulations and Experiments
1
作者 jin-hua xiao Da-Wei Ding +3 位作者 Lin Li Yi-Tao Sun Mao-Zhi Li Wei-Hua Wang 《Chinese Physics Letters》 2025年第1期102-113,共12页
A high saturation magnetic flux density(Bs)is essential for the development of Fe-based amorphous alloys for electromagnetic devices and motors.However,achieving a high Bs often compromises the glass-forming ability(G... A high saturation magnetic flux density(Bs)is essential for the development of Fe-based amorphous alloys for electromagnetic devices and motors.However,achieving a high Bs often compromises the glass-forming ability(GFA)of Fe-based amorphous alloys.This study investigates the effects of ferromagnetic elements(Fe,Co,and Ni)on the microstructure and magnetic properties of Fe86B7C7 amorphous alloys through experiments and ab initio molecular dynamics simulations.By analyzing both the experimental and simulation results,the relationship between the atomic structures,GFA,and magnetic properties of these amorphous alloys was determined.The results indicate that the GFA of the alloys is correlated with the proportion of icosahedral and body-centered cubic clusters.The addition of Co and Ni not only improved the GFA of the alloys but also effectively increased the overall magnetic moment with an appropriate amount of Co and a small amount of Ni.This increase in the magnetic moment primarily arises from the enhancement of the magnetic moment of Fe atoms,resulting from the redistribution between the spin-up and spin-down electrons of Fe-3d orbits,as well as the strong exchange interactions between Fe and Co and Fe–Ni pairs.The results obtained offer valuable insights into the correlation between the atomic structure and magnetic properties of these amorphous alloys and suggest potential directions for the optimization of Fe-based amorphous alloys. 展开更多
关键词 ALLOYS microstructure magnetic
在线阅读 下载PDF
Effect of Y element on atomic structure, glass forming ability,and magnetic properties of FeBC alloy
2
作者 肖晋桦 丁大伟 +3 位作者 李琳 孙奕韬 李茂枝 汪卫华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期440-446,共7页
The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f... The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications. 展开更多
关键词 Fe-based amorphous alloy ab initio molecular dynamic simulation glass-forming ability magnetic properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部