Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as m...In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
The specific detection of tumor markers is crucial in early tumor screening and subsequent treatment processes.To ac-curately distinguish the signal response caused by trace markers,the high demodulation resolution of...The specific detection of tumor markers is crucial in early tumor screening and subsequent treatment processes.To ac-curately distinguish the signal response caused by trace markers,the high demodulation resolution of the sensor is necessary.In this paper,we propose a dual-wavelength fiber laser sensing system enhanced with microwave photonics de-modulation technology to achieve high-resolution tumor marker detection.This sensing system can simultaneously perform spectral wavelength-domain and frequency-domain analyses.Experimental results demonstrate that this system's refractive index(RI)sensitivity reaches 1083 nm/RIU by wavelength analysis and-1902 GHz/RIU by frequency analysis,with ideal detection resolutions of 1.85×10^(-5)RIU and 5.26×10^(-8)RIU,respectively.Compared with traditional wavelength domain analysis,the demodulation resolution is improved by three orders of magnitude,based on the same sensing structure.To validate its biosensing performance,carcinoembryonic antigen-related cell adhesion molecule 5(CEACAM5)is selected as the detection target.Experimental results show that the improved sensing system has a limit of detection(LOD)of 0.076 ng/mL and a detection resolution of 0.008 ng/mL.Experimental results obtained from human serum samples are consistent with clinical data,highlighting the strong clinical application potential of the proposed sens-ing system and analysis method.展开更多
Retina nociceptor,as a key sensory receptor,not only enables the transport of warning signals to the human central nervous system upon its exposure to noxious stimuli,but also triggers the motor response that minimize...Retina nociceptor,as a key sensory receptor,not only enables the transport of warning signals to the human central nervous system upon its exposure to noxious stimuli,but also triggers the motor response that minimizes potential sensitization.In this study,the capability of two-dimensional all-oxide-heterostructured artificial nociceptor as a single device with tunable properties was confirmed.Newly designed nociceptors utilize ultra-thin sub-stoichiometric TiO2–Ga2O3 heterostructures,where the thermally annealed Ga2O3 films play the role of charge transfer controlling component.It is discovered that the phase transformation in Ga2O3 is accompanied by substantial jump in conductivity,induced by thermally assisted internal redox reaction of Ga2O3 nanostructure during annealing.It is also experimentally confirmed that the charge transfer in alloxide heterostructures can be tuned and controlled by the heterointerfaces manipulation.Results demonstrate that the engineering of heterointerfaces of two-dimensional(2D)films enables the fabrication of either high-sensitive TiO2–Ga2O3(Ar)or high-threshold TiO2–Ga2O3(N2)nociceptors.The hypersensitive nociceptor mimics the functionalities of corneal nociceptors of human eye,whereas the delayed reaction of nociceptor is similar to high-threshold nociceptive characteristics of human sensory system.The long-term stability of 2D nociceptors demonstrates the capability of heterointerfaces engineering for e ective control of charge transfer at 2D heterostructured devices.展开更多
Background: Heat stroke(HS) is a serious, life-threatening disease. However, there is no scoring system for HS so far. This research is to establish a scoring system that can quantitatively assess the severity of exer...Background: Heat stroke(HS) is a serious, life-threatening disease. However, there is no scoring system for HS so far. This research is to establish a scoring system that can quantitatively assess the severity of exertional heat stroke(EHS).Methods: Data were collected from a total of 170 exertional heat stroke(EHS) patients between 2005 and 2016 from 52 hospitals in China. Univariate statistical methods and comparison of the area under the receiver operating characteristic(ROC) curve(AUC) were used to screen exertional heat stroke score(EHSS) parameters, including but not limited body temperature(T), Glasgow Coma Scale(GCS) and others. By comparing the sizes of the AUCs of the APACHE II, SOFA and EHSS assessments, the effectiveness of EHSS in evaluating the prognosis of EHS patients was verified.Results: Through screening with a series of methods, as described above, the present study determined 12 parameters – body temperature(T), GCS, p H, lactate(Lac), platelet count(PLT), prothrombin time(PT), fibrinogen(Fib), troponin I(Tn I), aspartate aminotransferase(AST), total bilirubin(TBIL), creatinine(Cr) and acute gastrointestinal injury(AGI) classification – as EHSS parameters. It is a 0–47 point system designed to reflect increasing severity of heat stroke. Low(EHSS<20) and high scores(EHSS>35) showed 100% survival and 100% mortality, respectively. We found that AUCEHSS>AUCSOFA>AUCAPACHE II.Conclusions: A total of 12 parameters – T, GCS, p H, Lac, PLT, PT, Fib, Tn I, AST, TBIL, Cr and gastrointestinal AGI classification – are the EHSS parameters with the best effectiveness in evaluating the prognosis of EHS patients. As EHSS score increases, the mortality rate of EHS patients gradually increases.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
Despite the rapid development of power conversion efficiency(PCE)for halide perovskite solar cells(PSCs),the lattice strain engineering in perovskite thin films has been rarely probed in recent years.Herein,a strain c...Despite the rapid development of power conversion efficiency(PCE)for halide perovskite solar cells(PSCs),the lattice strain engineering in perovskite thin films has been rarely probed in recent years.Herein,a strain compensation by homogeneous crystallization in perovskite films is achieved with the aid of precursor aging in the mixed-cation perovskite of Cs_(0.05)(FA_(0.83)MA_(0.17))Pb(I_(0.90)Br_(0.10))_(3)with near 20%PCE in inverted devices.The homogeneous crystallization releases the residual tensile stress and induces more compressive stress at the edges of perovskite films,thus elongating the carrier lifetime and reducing the trap-assisted carrier recombination.The high dependence on the perovskite components in strain engineering strategy was systematically revealed,wherein MAPbI_(3)and Cs_(0.05)(FA_(0.83)MA_(0.17))PbI_(3)film showed an increased compressive strain and FAPbI3 film showed adverse tensile strain after aging.The density functional theory(DFT)calculations are further performed to reveal the change of electronic features.The precursor aging-induced strain modulation was correlated with a systematic characterization of the charge carrier transport and recombination dynamics in the mixed-cation perovskite films.We believe that this facile approach provides a novel strain engineering strategy for PSCs technology.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The...In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.展开更多
BACKGROUND:The aim of the study was to investigate the procalcitonin-to-cortisol ratio(P/C ratio)as a prognostic predictor among septic patients with abdominal source.METHODS:We retrospectively enrolled 132 post-surge...BACKGROUND:The aim of the study was to investigate the procalcitonin-to-cortisol ratio(P/C ratio)as a prognostic predictor among septic patients with abdominal source.METHODS:We retrospectively enrolled 132 post-surgery patients between 18 and 90 years old with sepsis of the abdominal source.On the second day of sepsis onset,cortisol,procalcitonin(PCT),Acute Physiology and Chronic Health Evaluation(APACHE)II score,Sequential Organ Failure Assessment(SOFA)score,C-response protein(CRP),and other baseline characteristics were collected.In addition,the length of ICU stay,length of mechanical ventilation(MV)days,length of shock days,and 28-day mortality were also recorded.Univariate analysis was performed to screen potential risk factors.Stratified analysis was used to identify the interaction among the risk factors.Multivariate analysis was also utilized to demonstrate the relationship between the risk factors and mortality.The receiver operator characteristic(ROC)curve analysis was conducted to evaluate the risk factors.A restricted cubic spline(RCS)demonstrated the association between survival outcome and the P/C ratio variation.RESULTS:A total of twenty-nine patients died,and 103 patients survived within 28 d.There were significant differences in cortisol,PCT,P/C ratio,interleukin(IL)-6,SOFA,and APACHE II scores between the survival and non-survival groups.No significant interaction was observed in the stratified analysis.Logistic regression analysis revealed that P/C ratio(P=0.033)was significantly related to 28-day mortality.Based on ROC curves,P/C ratio(AUC=0.919)had a higher AUC value than cortisol or PCT.RCS analysis depicted a positive relationship between survival possibility and P/C ratio decrement.CONCLUSION:P/C ratio might be a potential prognostic predictor in septic patients with abdominal sources.展开更多
The main works on disruption mitigation including suppression and mitigation of runaway current on the J-TEXT tokamak are summarized in this paper.Two strategies for the mitigation of runaway electron(RE) beams are ap...The main works on disruption mitigation including suppression and mitigation of runaway current on the J-TEXT tokamak are summarized in this paper.Two strategies for the mitigation of runaway electron(RE) beams are applied in experiments.The first strategy enables the REs to be completely suppressed by means of supersonic molecular beam injection and resonant magnetic perturbation which can enhance RE loss,magnetic energy transfer which can reduce the electric field,and secondary massive gas injection(MGI) which can increase the collisional damping.For the second strategy,the runaway current is allowed to form but should be dissipated or soft landed within tolerance.It is observed that the runaway current can be significantly dissipated by MGI,and the dissipation rate increases with the injected impurity particle number and eventually stabilizes at 28 MA s^(-1).The dissipation rate of the runaway current can be up to 3 MA s^(-1)by ohmic field.Shattered pellet injection has been chosen as the main disruption mitigation method,which has the capability of injecting material deeper into the plasma for higher density assimilation when compared to MGI.Moreover,simulation works show that the RE seeds in the plasma are strongly influenced under different phases and sizes of 2/1 mode locked islands during thermal quench.The robust runaway suppression and runaway current dissipation provide an important insight on the disruption mitigation for future large tokamaks.展开更多
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s...Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.展开更多
To establish and validate a method for cell irradiation in 96-well and 6-well plates using a linear accelerator, three irradiation methods(G0 B0 F40,G0 B1.5 F40, and G180 B1.5 F40) were designed to irradiate cell cult...To establish and validate a method for cell irradiation in 96-well and 6-well plates using a linear accelerator, three irradiation methods(G0 B0 F40,G0 B1.5 F40, and G180 B1.5 F40) were designed to irradiate cell culture plasticware simulated with RW3 slab phantom and polystyrene. The difference between the actual physical measured dose and the preset dose was compared among the three methods under the preparatory conditions of 2, 4, 6, 8, and 10 Gy. MDA-MB-231 cells were analyzed by using a cell proliferation assay and a clonogenic assay to verify the difference between the three cell irradiation methods on cell radiosensitivity. For each preset dose, the difference between the actual measured dose and the preset dose was the lowest for Method G0 B1.5 F40, the second lowest for Method G180 B1.5 F40, and the maximum for Method GOB0 F40. The ranges of the differences were-0.28 to 0.02%,-2.17 to-1.80%, and-4.92 to-4.55%, and 0.31 to-0.12%,-3.42 to-2.86%, and-7.31 to-6.92%,respectively, for 96-well and 6-well plates. The cell culture experiments proved that Method G0 B1.5 F40 was an accurate, effective, simple, and practical irradiation method. The most accurate and effective cell irradiation method should always be used, as it will reduce dose differences and instability factors and provide improved accuracy and comparability for laboratories researching cellular radiosensitivity.展开更多
We study the ground state energy of an atom interacting with an oscillating optical field with electric dipole and quadrupole coupling.Under the rotating wave approximation,we derive the effective atomic Hamiltonians ...We study the ground state energy of an atom interacting with an oscillating optical field with electric dipole and quadrupole coupling.Under the rotating wave approximation,we derive the effective atomic Hamiltonians of the dipole/quadrupole coupling term within the perturbation theory up to the second order.Based on the effective Hamiltonians,we analyze the atomic ground-state energy corrections of these two processes in detail.As an application,we find that for alkali-like atoms,the energy correction from the quadrupole coupling is negligible small in comparison with that from the dipole coupling,which justifies the so-called dipole approximation used in literatures.Some special cases where the quadrupole interaction may have considerable energy corrections are also discussed.Our results would be beneficial for the study of atom–light interaction beyond dipole approximation.展开更多
Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric m...Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.展开更多
Recently,experimental studies on the soft landing of RE current by ohmic(OH)field have been performed in J-TEXT tokamak,as a possible auxiliary method to dissipate the RE current.With optimized horizontal displacement...Recently,experimental studies on the soft landing of RE current by ohmic(OH)field have been performed in J-TEXT tokamak,as a possible auxiliary method to dissipate the RE current.With optimized horizontal displacement control of the RE beam,the toroidal electric field has been scanned from 1.6 to—0.3 V m^-1 during the RE plateau phase.The growth rate of RE currents and the evolution of hard x-ray(HXR)emissions have been studied.It is found that when the toroidal electric field is less than 7-12 times the theoretical critical electric field,the decay of REs could be achieved.The dissipation rate by the ohmic field can reach a maximum value of 3 MA s^-1.Furthermore,the results of HXR spectra analysis indicate the different behaviors of HXR emissions under the condition of different toroidal electric fields.The analysis of the ionized argon emissions and magnetic fluctuations shows that under the condition of different toroidal electric fields,the physical process of RE generation may be different.展开更多
Defining a software-defined data center is a vision of the future.An SDDC brings together software-defined compute,software-de fined network,software-defined storage,software-defined hypervisor,software-defined availa...Defining a software-defined data center is a vision of the future.An SDDC brings together software-defined compute,software-de fined network,software-defined storage,software-defined hypervisor,software-defined availability,and software-defined security.It also unifies the control planes of each individual software-defined component.A unified control plane enables rich resource abstrac tions for purpose-fit orchestration systems and/or programmable infrastructures.This enables dynamic optimization according to busi ness requirements.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974137,92250306,and 12304302)the National Key Program for Science and Technology Research and Development(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of Jilin Provincial Education Department,China(Grant No.JJKH20230283KJ)。
文摘In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金supported in part by the Science and Technology Department of Guangdong Province(2021A0505080002)Department of Natural Resources of Guangdong Province(GDNRC[2022]No.22)+2 种基金Science,Technology and Innovation Commission of Shenzhen Municipality(20220815121807001)Hunan Provincial Natural Science Foundation of China(under Grant Nos.2023JJ30209)Hunan Provincial Education Department Science Research Fund of China(under Grant Nos.22B0862).
文摘The specific detection of tumor markers is crucial in early tumor screening and subsequent treatment processes.To ac-curately distinguish the signal response caused by trace markers,the high demodulation resolution of the sensor is necessary.In this paper,we propose a dual-wavelength fiber laser sensing system enhanced with microwave photonics de-modulation technology to achieve high-resolution tumor marker detection.This sensing system can simultaneously perform spectral wavelength-domain and frequency-domain analyses.Experimental results demonstrate that this system's refractive index(RI)sensitivity reaches 1083 nm/RIU by wavelength analysis and-1902 GHz/RIU by frequency analysis,with ideal detection resolutions of 1.85×10^(-5)RIU and 5.26×10^(-8)RIU,respectively.Compared with traditional wavelength domain analysis,the demodulation resolution is improved by three orders of magnitude,based on the same sensing structure.To validate its biosensing performance,carcinoembryonic antigen-related cell adhesion molecule 5(CEACAM5)is selected as the detection target.Experimental results show that the improved sensing system has a limit of detection(LOD)of 0.076 ng/mL and a detection resolution of 0.008 ng/mL.Experimental results obtained from human serum samples are consistent with clinical data,highlighting the strong clinical application potential of the proposed sens-ing system and analysis method.
基金supported by Research and Development Program of the Ghent University Global Campus,South Korea.
文摘Retina nociceptor,as a key sensory receptor,not only enables the transport of warning signals to the human central nervous system upon its exposure to noxious stimuli,but also triggers the motor response that minimizes potential sensitization.In this study,the capability of two-dimensional all-oxide-heterostructured artificial nociceptor as a single device with tunable properties was confirmed.Newly designed nociceptors utilize ultra-thin sub-stoichiometric TiO2–Ga2O3 heterostructures,where the thermally annealed Ga2O3 films play the role of charge transfer controlling component.It is discovered that the phase transformation in Ga2O3 is accompanied by substantial jump in conductivity,induced by thermally assisted internal redox reaction of Ga2O3 nanostructure during annealing.It is also experimentally confirmed that the charge transfer in alloxide heterostructures can be tuned and controlled by the heterointerfaces manipulation.Results demonstrate that the engineering of heterointerfaces of two-dimensional(2D)films enables the fabrication of either high-sensitive TiO2–Ga2O3(Ar)or high-threshold TiO2–Ga2O3(N2)nociceptors.The hypersensitive nociceptor mimics the functionalities of corneal nociceptors of human eye,whereas the delayed reaction of nociceptor is similar to high-threshold nociceptive characteristics of human sensory system.The long-term stability of 2D nociceptors demonstrates the capability of heterointerfaces engineering for e ective control of charge transfer at 2D heterostructured devices.
基金supported by the National Natural Science Foundation of China (81671966)the Beijing Natural Science Foundation (7182155)+2 种基金the Application Research and Achievement Extension of Clinical Characteristics in Chinese Capital Foundation (Z171100001017160)the Cultivation Program for Military Medical Science and Technology Youth-Growth Project (16QNP139)the Clinical Research Support Foundation of Chinese PLA General Hospital (2015FC-ZHCG-1002)。
文摘Background: Heat stroke(HS) is a serious, life-threatening disease. However, there is no scoring system for HS so far. This research is to establish a scoring system that can quantitatively assess the severity of exertional heat stroke(EHS).Methods: Data were collected from a total of 170 exertional heat stroke(EHS) patients between 2005 and 2016 from 52 hospitals in China. Univariate statistical methods and comparison of the area under the receiver operating characteristic(ROC) curve(AUC) were used to screen exertional heat stroke score(EHSS) parameters, including but not limited body temperature(T), Glasgow Coma Scale(GCS) and others. By comparing the sizes of the AUCs of the APACHE II, SOFA and EHSS assessments, the effectiveness of EHSS in evaluating the prognosis of EHS patients was verified.Results: Through screening with a series of methods, as described above, the present study determined 12 parameters – body temperature(T), GCS, p H, lactate(Lac), platelet count(PLT), prothrombin time(PT), fibrinogen(Fib), troponin I(Tn I), aspartate aminotransferase(AST), total bilirubin(TBIL), creatinine(Cr) and acute gastrointestinal injury(AGI) classification – as EHSS parameters. It is a 0–47 point system designed to reflect increasing severity of heat stroke. Low(EHSS<20) and high scores(EHSS>35) showed 100% survival and 100% mortality, respectively. We found that AUCEHSS>AUCSOFA>AUCAPACHE II.Conclusions: A total of 12 parameters – T, GCS, p H, Lac, PLT, PT, Fib, Tn I, AST, TBIL, Cr and gastrointestinal AGI classification – are the EHSS parameters with the best effectiveness in evaluating the prognosis of EHS patients. As EHSS score increases, the mortality rate of EHS patients gradually increases.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金financially supported by the National Natural Science Foundation of China(51702038)the Science&Technology Department of Sichuan Province(2020YFG0061)the Recruitment Program for Young Professionals.
文摘Despite the rapid development of power conversion efficiency(PCE)for halide perovskite solar cells(PSCs),the lattice strain engineering in perovskite thin films has been rarely probed in recent years.Herein,a strain compensation by homogeneous crystallization in perovskite films is achieved with the aid of precursor aging in the mixed-cation perovskite of Cs_(0.05)(FA_(0.83)MA_(0.17))Pb(I_(0.90)Br_(0.10))_(3)with near 20%PCE in inverted devices.The homogeneous crystallization releases the residual tensile stress and induces more compressive stress at the edges of perovskite films,thus elongating the carrier lifetime and reducing the trap-assisted carrier recombination.The high dependence on the perovskite components in strain engineering strategy was systematically revealed,wherein MAPbI_(3)and Cs_(0.05)(FA_(0.83)MA_(0.17))PbI_(3)film showed an increased compressive strain and FAPbI3 film showed adverse tensile strain after aging.The density functional theory(DFT)calculations are further performed to reveal the change of electronic features.The precursor aging-induced strain modulation was correlated with a systematic characterization of the charge carrier transport and recombination dynamics in the mixed-cation perovskite films.We believe that this facile approach provides a novel strain engineering strategy for PSCs technology.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
基金financial support of National Natural Science Foundation of China(NSFC),No.U1705263 and 61971102GF Innovative Research Programthe Sichuan Science and Technology Program,No.2019YJ0194。
文摘In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.
文摘BACKGROUND:The aim of the study was to investigate the procalcitonin-to-cortisol ratio(P/C ratio)as a prognostic predictor among septic patients with abdominal source.METHODS:We retrospectively enrolled 132 post-surgery patients between 18 and 90 years old with sepsis of the abdominal source.On the second day of sepsis onset,cortisol,procalcitonin(PCT),Acute Physiology and Chronic Health Evaluation(APACHE)II score,Sequential Organ Failure Assessment(SOFA)score,C-response protein(CRP),and other baseline characteristics were collected.In addition,the length of ICU stay,length of mechanical ventilation(MV)days,length of shock days,and 28-day mortality were also recorded.Univariate analysis was performed to screen potential risk factors.Stratified analysis was used to identify the interaction among the risk factors.Multivariate analysis was also utilized to demonstrate the relationship between the risk factors and mortality.The receiver operator characteristic(ROC)curve analysis was conducted to evaluate the risk factors.A restricted cubic spline(RCS)demonstrated the association between survival outcome and the P/C ratio variation.RESULTS:A total of twenty-nine patients died,and 103 patients survived within 28 d.There were significant differences in cortisol,PCT,P/C ratio,interleukin(IL)-6,SOFA,and APACHE II scores between the survival and non-survival groups.No significant interaction was observed in the stratified analysis.Logistic regression analysis revealed that P/C ratio(P=0.033)was significantly related to 28-day mortality.Based on ROC curves,P/C ratio(AUC=0.919)had a higher AUC value than cortisol or PCT.RCS analysis depicted a positive relationship between survival possibility and P/C ratio decrement.CONCLUSION:P/C ratio might be a potential prognostic predictor in septic patients with abdominal sources.
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03010004,2018YFE0309103,2018YFE0310300,2018YFE0309100,2017YFE0302000,2017YFE0300501)National Natural Science Foundation of China(Nos.11775089,51821005,12205122,11905077 and 11575068)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.21KJB140025)
文摘The main works on disruption mitigation including suppression and mitigation of runaway current on the J-TEXT tokamak are summarized in this paper.Two strategies for the mitigation of runaway electron(RE) beams are applied in experiments.The first strategy enables the REs to be completely suppressed by means of supersonic molecular beam injection and resonant magnetic perturbation which can enhance RE loss,magnetic energy transfer which can reduce the electric field,and secondary massive gas injection(MGI) which can increase the collisional damping.For the second strategy,the runaway current is allowed to form but should be dissipated or soft landed within tolerance.It is observed that the runaway current can be significantly dissipated by MGI,and the dissipation rate increases with the injected impurity particle number and eventually stabilizes at 28 MA s^(-1).The dissipation rate of the runaway current can be up to 3 MA s^(-1)by ohmic field.Shattered pellet injection has been chosen as the main disruption mitigation method,which has the capability of injecting material deeper into the plasma for higher density assimilation when compared to MGI.Moreover,simulation works show that the RE seeds in the plasma are strongly influenced under different phases and sizes of 2/1 mode locked islands during thermal quench.The robust runaway suppression and runaway current dissipation provide an important insight on the disruption mitigation for future large tokamaks.
文摘Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.
基金supported by the Hospital Personnel Climbing Plan of the Tenth People's Hospital Affiliated to Tongji University
文摘To establish and validate a method for cell irradiation in 96-well and 6-well plates using a linear accelerator, three irradiation methods(G0 B0 F40,G0 B1.5 F40, and G180 B1.5 F40) were designed to irradiate cell culture plasticware simulated with RW3 slab phantom and polystyrene. The difference between the actual physical measured dose and the preset dose was compared among the three methods under the preparatory conditions of 2, 4, 6, 8, and 10 Gy. MDA-MB-231 cells were analyzed by using a cell proliferation assay and a clonogenic assay to verify the difference between the three cell irradiation methods on cell radiosensitivity. For each preset dose, the difference between the actual measured dose and the preset dose was the lowest for Method G0 B1.5 F40, the second lowest for Method G180 B1.5 F40, and the maximum for Method GOB0 F40. The ranges of the differences were-0.28 to 0.02%,-2.17 to-1.80%, and-4.92 to-4.55%, and 0.31 to-0.12%,-3.42 to-2.86%, and-7.31 to-6.92%,respectively, for 96-well and 6-well plates. The cell culture experiments proved that Method G0 B1.5 F40 was an accurate, effective, simple, and practical irradiation method. The most accurate and effective cell irradiation method should always be used, as it will reduce dose differences and instability factors and provide improved accuracy and comparability for laboratories researching cellular radiosensitivity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21503138,11247324,61405003,11604225,11404225,and 11474205)the Fund from Beijing Education Committees,China(Grant No.KM201710028004)
文摘We study the ground state energy of an atom interacting with an oscillating optical field with electric dipole and quadrupole coupling.Under the rotating wave approximation,we derive the effective atomic Hamiltonians of the dipole/quadrupole coupling term within the perturbation theory up to the second order.Based on the effective Hamiltonians,we analyze the atomic ground-state energy corrections of these two processes in detail.As an application,we find that for alkali-like atoms,the energy correction from the quadrupole coupling is negligible small in comparison with that from the dipole coupling,which justifies the so-called dipole approximation used in literatures.Some special cases where the quadrupole interaction may have considerable energy corrections are also discussed.Our results would be beneficial for the study of atom–light interaction beyond dipole approximation.
基金Supported by the National Natural Science Foundation of China under Grant No 11634006
文摘Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.
基金supported by the National Key R&D Program of China(No.2017YFE0302000)the National Magnetic Confinement Fusion Science Program of China(Nos.2015GB111002,2015GB104000)+1 种基金National Natural Science Foundation of China(Nos.11775089,51821005,71762031,11575068,11905077)the China Postdoctoral Science Foundation(2019M652615)。
文摘Recently,experimental studies on the soft landing of RE current by ohmic(OH)field have been performed in J-TEXT tokamak,as a possible auxiliary method to dissipate the RE current.With optimized horizontal displacement control of the RE beam,the toroidal electric field has been scanned from 1.6 to—0.3 V m^-1 during the RE plateau phase.The growth rate of RE currents and the evolution of hard x-ray(HXR)emissions have been studied.It is found that when the toroidal electric field is less than 7-12 times the theoretical critical electric field,the decay of REs could be achieved.The dissipation rate by the ohmic field can reach a maximum value of 3 MA s^-1.Furthermore,the results of HXR spectra analysis indicate the different behaviors of HXR emissions under the condition of different toroidal electric fields.The analysis of the ionized argon emissions and magnetic fluctuations shows that under the condition of different toroidal electric fields,the physical process of RE generation may be different.
文摘Defining a software-defined data center is a vision of the future.An SDDC brings together software-defined compute,software-de fined network,software-defined storage,software-defined hypervisor,software-defined availability,and software-defined security.It also unifies the control planes of each individual software-defined component.A unified control plane enables rich resource abstrac tions for purpose-fit orchestration systems and/or programmable infrastructures.This enables dynamic optimization according to busi ness requirements.