High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when c...High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced.Here,by in situ vacuum annealing and Rb deposition on the Bi2Sr2Ca0.6Dy0.4Cu2O8+δ(Bi2212)sample surface to push its doping level continuously from deeply underdoped(Tc=25K,doping level p^0.066)to the near-zero doping parent Mott insulator,angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time.Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping,which is quite close to the upper Hubbard band.With increasing hole doping,the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior.When the chemical potential approaches the charge transfer band at a doping level of^0.05,the nodal spectral weight near the Fermi level increases,followed by the emergence of the coherent quasiparticle peak and the insulator-superconductor transition.Our observations provide key insights in understanding the insulator-superconductor transition in doping the parent cuprate compound and for establishing related theories.展开更多
High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clea...High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels:the bonding sheet corresponds to a doping level of 0.14,which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped,giving an overall doping level of 0.20 for the sample.Different superconducting gap sizes on the two Fermi surface sheets are revealed.The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet.The maximum gap difference between the two Fermi surface sheets near the antinodal region is~2 meV.These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity,and the layer-dependent superconductivity in high temperature cuprate superconductors.展开更多
High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the...High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.11888101,11922414,and 11534007)the National Key Research and Development Program of China(Grant Nos.2016YFA0300300 and 2017YFA0302900)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS(Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G06).
文摘High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced.Here,by in situ vacuum annealing and Rb deposition on the Bi2Sr2Ca0.6Dy0.4Cu2O8+δ(Bi2212)sample surface to push its doping level continuously from deeply underdoped(Tc=25K,doping level p^0.066)to the near-zero doping parent Mott insulator,angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time.Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping,which is quite close to the upper Hubbard band.With increasing hole doping,the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior.When the chemical potential approaches the charge transfer band at a doping level of^0.05,the nodal spectral weight near the Fermi level increases,followed by the emergence of the coherent quasiparticle peak and the insulator-superconductor transition.Our observations provide key insights in understanding the insulator-superconductor transition in doping the parent cuprate compound and for establishing related theories.
基金Supported by the National Natural Science Foundation of China under Grant No 11888101the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB25000000)the Youth Innovation Promotion Association of CAS under Grant No2017013the Research Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G06supported by the Office of Basic Energy Sciences,U.S.Department of Energy(DOE)under Contract No de-sc0012704
文摘High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels:the bonding sheet corresponds to a doping level of 0.14,which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped,giving an overall doping level of 0.20 for the sample.Different superconducting gap sizes on the two Fermi surface sheets are revealed.The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet.The maximum gap difference between the two Fermi surface sheets near the antinodal region is~2 meV.These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity,and the layer-dependent superconductivity in high temperature cuprate superconductors.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0300300,2017YFA0302900,2018YFA0704200 and 2019YFA0308000)the National Natural Science Foundation of China (Grant Nos.11888101,11922414 and11874405)+2 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS (Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences (Grant No.Y18G06)。
文摘High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.