Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of...Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of how specific electrolyte influences Cu-based catalysts is lacking.This review addresses this gap by focusing on how electrolytes impact surface reconstruction and the CO_(2) reduction process on Cu-based electrocatalysts,identifying specific electrolyte compositions that enhance the density and stability of active sites,and providing insights into how different electrolyte environments modulate the selectivity and efficiency of C_(2+)product formation.The review begins by exploring how electrolytes induce favorable surface reconstruction in Cu-based catalysts,affecting surface roughness through dissolution-redeposition of Cu species and interactions with halogens and molecular additives.It also covers changes in crystalline facets of Cu and Cu_(2)O,and oxidation states,highlighting transitions from Cu^(0) to Cu^(δ+)and the stabilization of Cu^(+).The role of electrolytes in the C–C coupling process is examined,emphasizing their effects in modulating mass and charge transfer,CO_(2) adsorption,intermediate evolution,and product desorption.Subsequently,the mechanisms by non-aqueous electrolytes,including organic solvents,ionic liquids,and mixed electrolytes,affecting CO_(2) reduction are analyzed,highlighting the unique advantages and challenges of each type.The review concludes by addressing current challenges,proposing solutions,and research directions,such as optimizing electrolyte composition by integrating diverse cations and anions and employing advanced in-situ characterization techniques.These insights can significantly enhance CO_(2)reduction performance on Cu-based electrocatalysts,advancing efficient and sustainable green energy technologies.展开更多
以新鲜紫皮洋葱为原料,采用热水浸提法提取洋葱低聚糖并对提取物进行分离研究。通过单因素实验及正交试验确定洋葱低聚糖的最佳提取工艺,利用薄层层析法(TLC检测)和质谱(MS)分析检测提取物,Bio gel P-2生物胶层析对糖分进行分离。结果表...以新鲜紫皮洋葱为原料,采用热水浸提法提取洋葱低聚糖并对提取物进行分离研究。通过单因素实验及正交试验确定洋葱低聚糖的最佳提取工艺,利用薄层层析法(TLC检测)和质谱(MS)分析检测提取物,Bio gel P-2生物胶层析对糖分进行分离。结果表明:紫皮洋葱低聚糖的最佳提取工艺为料液比1∶5(g/m L)、提取温度70℃、提取时间80 min,在此提取工艺下,所提取到的低聚糖含量为3.92 mg/g。TLC检测分析和MS检测表明,紫皮洋葱提取物中有多种聚合度的糖类物质存在,HPLC分析显示,紫皮洋葱低聚糖主要组成为蔗果低聚糖,β-呋喃果糖苷酶能较好的对其水解,且凝胶层析结果表明Bio gel P-2凝胶可以对紫皮洋葱低聚糖进行初步分离。展开更多
To improve the performance of a metal ion plasma jet in vacuum discharge, an anode-insulated cone-cylinder electrode with insulating sleeve is proposed in this paper. Discharge characteristics and generation character...To improve the performance of a metal ion plasma jet in vacuum discharge, an anode-insulated cone-cylinder electrode with insulating sleeve is proposed in this paper. Discharge characteristics and generation characteristics of plasma of the electrode are investigated, effects of diameter of insulating sleeve, variety of cathode material and length of the insulating sleeve on characteristics of metal ion plasma jet are discussed. Results indicate that a directional and steady plasma jet is formed by using the novel electrode with insulating sleeve under high vacuum conditions. Moreover, the properties of metal ion plasma jet are improved by using the aluminum cathode and thin and long insulating sleeve. The study provides strong support for research of vacuum metal ion plasma thruster and ion implantation technology.展开更多
In order to achieve atmospheric pressure diffuse dielectric barrier discharge(DBD) in air, a helical-helical electrode structure with a floating-voltage electrode is proposed in this paper.Results from an electric fie...In order to achieve atmospheric pressure diffuse dielectric barrier discharge(DBD) in air, a helical-helical electrode structure with a floating-voltage electrode is proposed in this paper.Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak(<3?×?106 V m-1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical-helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.展开更多
In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance ...In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated.Results show that the existence of a resistor on the anode side can increase the anode potential,thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle.The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge,increasing the peak value of the cathode hump potential,but also prevent charged particles from moving to the anode,thereby improving the ejection performance of the plasma jet.In addition,the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet.Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.展开更多
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金supported by the Hubei Provincial Natural Science Foundation of China (2023AFB0049)the Scientific Research Fund Project of Wuhan Institute of Technology (No.K2024006)the Graduate Education Innovation Fund of Wuhan Institute of Technology (No. CX2023091)。
文摘Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of how specific electrolyte influences Cu-based catalysts is lacking.This review addresses this gap by focusing on how electrolytes impact surface reconstruction and the CO_(2) reduction process on Cu-based electrocatalysts,identifying specific electrolyte compositions that enhance the density and stability of active sites,and providing insights into how different electrolyte environments modulate the selectivity and efficiency of C_(2+)product formation.The review begins by exploring how electrolytes induce favorable surface reconstruction in Cu-based catalysts,affecting surface roughness through dissolution-redeposition of Cu species and interactions with halogens and molecular additives.It also covers changes in crystalline facets of Cu and Cu_(2)O,and oxidation states,highlighting transitions from Cu^(0) to Cu^(δ+)and the stabilization of Cu^(+).The role of electrolytes in the C–C coupling process is examined,emphasizing their effects in modulating mass and charge transfer,CO_(2) adsorption,intermediate evolution,and product desorption.Subsequently,the mechanisms by non-aqueous electrolytes,including organic solvents,ionic liquids,and mixed electrolytes,affecting CO_(2) reduction are analyzed,highlighting the unique advantages and challenges of each type.The review concludes by addressing current challenges,proposing solutions,and research directions,such as optimizing electrolyte composition by integrating diverse cations and anions and employing advanced in-situ characterization techniques.These insights can significantly enhance CO_(2)reduction performance on Cu-based electrocatalysts,advancing efficient and sustainable green energy technologies.
文摘以新鲜紫皮洋葱为原料,采用热水浸提法提取洋葱低聚糖并对提取物进行分离研究。通过单因素实验及正交试验确定洋葱低聚糖的最佳提取工艺,利用薄层层析法(TLC检测)和质谱(MS)分析检测提取物,Bio gel P-2生物胶层析对糖分进行分离。结果表明:紫皮洋葱低聚糖的最佳提取工艺为料液比1∶5(g/m L)、提取温度70℃、提取时间80 min,在此提取工艺下,所提取到的低聚糖含量为3.92 mg/g。TLC检测分析和MS检测表明,紫皮洋葱提取物中有多种聚合度的糖类物质存在,HPLC分析显示,紫皮洋葱低聚糖主要组成为蔗果低聚糖,β-呋喃果糖苷酶能较好的对其水解,且凝胶层析结果表明Bio gel P-2凝胶可以对紫皮洋葱低聚糖进行初步分离。
基金supported by National Natural Science Foundation of China(No.51577011)
文摘To improve the performance of a metal ion plasma jet in vacuum discharge, an anode-insulated cone-cylinder electrode with insulating sleeve is proposed in this paper. Discharge characteristics and generation characteristics of plasma of the electrode are investigated, effects of diameter of insulating sleeve, variety of cathode material and length of the insulating sleeve on characteristics of metal ion plasma jet are discussed. Results indicate that a directional and steady plasma jet is formed by using the novel electrode with insulating sleeve under high vacuum conditions. Moreover, the properties of metal ion plasma jet are improved by using the aluminum cathode and thin and long insulating sleeve. The study provides strong support for research of vacuum metal ion plasma thruster and ion implantation technology.
基金supported by National Natural Science Foundation of China (No. 51577011)
文摘In order to achieve atmospheric pressure diffuse dielectric barrier discharge(DBD) in air, a helical-helical electrode structure with a floating-voltage electrode is proposed in this paper.Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak(<3?×?106 V m-1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical-helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS187)National Natural Science Foundation of China(No.51577011)。
文摘In a pulsed vacuum discharge,the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode.In this paper,the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated.Results show that the existence of a resistor on the anode side can increase the anode potential,thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle.The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge,increasing the peak value of the cathode hump potential,but also prevent charged particles from moving to the anode,thereby improving the ejection performance of the plasma jet.In addition,the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet.Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.